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ABSTRACT

Software-defined network (SDN) orchestration, the problem of integrating and deploy-
ing multiple network control functions (NCFs) while minimizing suboptimal network
states that can result from competing NCF proposals, is a challenging open prob-
lem. In this work, we formulate SDN orchestration as a multiobjective optimization
problem, present an evolutionary algorithm designed to explore the NCF tradeoff
space comprehensively and avoid local optima, and propose a new application-aware
approach that explicitly models resource preferences of individual application work-
loads. Further, we propose a new logical application workload (LAW) abstraction to
enable precomputation of the required relative positioning of an application’s virtual
machines (VMs) and allocation of these VMs in a single atomic step, leading to online
algorithms that are one order of magnitude faster than existing solutions for placing
data center workloads. For an instance of the SDN orchestration problem subject to
four independent NCFs attempting to optimize network survivability, bandwidth ef-
ficiency, power conservation, and computational contention, we demonstrate that our
approach enumerates a wider range of, and potentially better, solutions than current
orchestrators, for data centers with hundreds of switches, thousands of servers, and
tens of thousands of VM slots.
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CHAPTER 1:
Introduction

Cloud computing [1], the practice of using warehouse-scale networks of computer
servers called data centers to remotely store, manage, and process user data, is be-
coming increasingly popular as a cost-effective and on-demand solution for both cor-
porate (e.g., Google, Amazon, Microsoft) and government (e.g., Defense Information
Systems Agency) service providers to provide mission-critical applications such as
email, video teleconferencing, and mission planning, to cloud tenants. A cloud ten-
ant, or simply “tenant,” is a consumer of a provided cloud service. Such consumers
may include government agencies, corporate enterprises, or even individual users.
The relationship between cloud provider and tenant is typically defined in terms of
special contract called a service-level agreement (SLA), which defines the amount of
physical data center resources (e.g., CPU, memory, storage, link bandwidth, etc.) to
be allocated to some tenant application requirement, or “workload”. A workload is
typically represented by the number and size of application components (i.e., virtual
machines) required to support the tenant application. It is the task of the data cen-
ter operator to allocate these application workload components to resources of the
physical infrastructure that can support them (e.g., physical host servers, switches,
middleboxes). Quality-of-service (QoS) requirements, such as latency, response time,
throughput, and application availability required by the tenant workload may also be
stated in the SLA. Hence, although cloud tenants are typically only concerned with a
single objective, namely the cloud provider’s ability fulfill their stated SLA, the goals
of the data center operators providing cloud services are more complex: their aim is
to fulfill the SLA of all tenants while jointly achieving a multitude of “operator ob-
jectives”. Such objectives include fault tolerance, typically measured by the fraction
of application components (e.g., virtual machines) that survive a single worst case
physical component (e.g., network device) failure; network communication efficiency,
which may be measured by the average (or maximum) amount of bandwidth allocated
(or latency incurred) over a set of network links, and power conservation, measured
by the amount electrical power used.
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A recent Cisco report [2] provides clear evidence that “enterprise and government
organizations are moving from test environments to placing more of their mission-
critical application workloads into the cloud.” According to this report, the number
of application workloads processed by cloud data centers and the total amount of
network traffic generated by these workloads are each expected to increase by over
300% over the next five years. This unprecedented demand for cloud services has led
to the development of complex large-scale data centers to host them while creating a
multitude of new challenges for the data center operators charged with orchestrating
their deployment.

First, certain operator objectives like fault tolerance, network communication effi-
ciency, and power conservation may be in conflict with each other, and hence require
tradeoff considerations. Second, different types of applications may bottleneck dif-
ferent data center resources. For instance, placing components of computationally
intensive workloads on the same physical host server may cause a throughput bot-
tleneck from CPU overcontention, whereas data intensive workload components may
cause a network bottleneck if spread across several different physical hosts due to the
high data throughput required of such tasks. Thus, different types of applications
require different resource allocation considerations. Third, the data center networks
that serve as the backbone of cloud service providers are large, on the order of hun-
dreds of switches, thousands of servers, and tens of thousands of virtual machines
(VMs), or larger [2]; thus, for automated orchestration solutions to be effective, they
must be scalable to large network topologies (e.g., thousands of devices) at reasonable
time scales (e.g., order of seconds).

The key question that this dissertation answers is how to orchestrate the allocation
of tenant workloads in data center networks, in a scalable way, to comprehensively
explore the tradeoff space between competing operator objectives while minimizing
resource contention among individual applications.
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1.1 Orchestration Challenges in Data Centers
Software-defined networking (SDN) technology provides an open platform for de-
veloping specialized network control functions (NCFs) to achieve separate operator
goals, such as bandwidth efficiency [3,4], fault tolerance optimization [5], power con-
servation [6], quality-of-service (QoS) control [7], and security enforcement [8]. In
this work, our model for network orchestration is similar to Statesman [9], Coryban-
tic [10], and Athens [11], where each NCF is a specialized SDN control program that
proposes changes to the current network state for consideration by an orchestration
program in order to accomplish some specific objective. The orchestration program is
charged with evaluating the proposals of each NCF, and subsequently implementing
any changes to the physical network. Proposed changes made by NCFs may include
allocating or migrating tenant VMs to host servers, adding or removing forwarding
rules from routing tables, updating access control lists on network devices, powering
on or off devices or device components, etc. Clearly, two separate NCFs may make
conflicting proposals. For instance, one NCF may want to use a specific resource (e.g.,
server, switch, network link), while another may want to power it off, as illustrated
in Figures 1.1 and 1.2. Furthermore, we assume that each NCF has a corresponding
utility or objective function that its proposed changes seek to maximize.

Ideally, data center operators seek to achieve network states that jointly optimize
their objectives given customer (i.e., tenant) requirements. Conflicting objectives,
diverse application workloads, varying application demand, and the size of data center
networks make achieving ideal network orchestration challenging, especially within
large-scale multi-tenant data centers.

1.1.1 Objectives May Conflict

Data center orchestration is inherently multi-objective in nature. Even if a data
center operator is primarily concerned with a single objective such as minimizing link
congestion, there are natural tradeoffs in other objectives, such as power conservation,
that must be accepted for such optimization.

To illustrate such tradeoffs, consider two hypothetical NCF proposals for a fat-tree
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Figure 1.1: NCF-B proposes to reduce link congestion by load balancing traffic across
all network links, whereas NCF-P proposes to save power by concentrating traffic over
a small subset of links.

data center architecture [12], as depicted in Figure 1.1. The fat-tree architecture is
a physical network topology commonly used in data networks representing a hier-
archical multi-rooted tree consisting of four levels: core switches (root, level = 0),
aggregate switches (level = 1), edge or top-of-rack (ToR) switches (level = 2), and
host servers (leaves, level = 3), with redundant links connecting devices at each level.
A data center operator wishing to minimize link congestion may choose to implement
NCF-B’s proposal to load balance traffic over the maximum number of links, but
in doing so achieves a network state that may be suboptimal when the additional
objective of power conservation is considered. Conversely, if a data center opera-
tor is solely concerned with power conservation, then he/she may opt to implement
NCF-P’s proposal, which concentrates traffic over a minimum subset of network links
and switches, allowing unused resources to be powered down. But this choice comes
with the tradeoff of higher link congestion. Clearly, a comprehensive approach for
exploring the tradeoff space of multiple NCF proposals is desirable.

1.1.2 Application Workloads Are Diverse

Application workloads hosted by data center networks stress a range of different re-
sources. Generally, we observe that these workloads are either 1) CPU or memory in-
tensive workloads (e.g., meteorological, geological, and particle physics simulations, or
other high performance computing tasks), commonly referred to as compute-intensive
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(CI) workloads, 2) network or storage intensive workloads (e.g., client-server appli-
cations or Hadoop and other big data applications), commonly referred to as data-
intensive (DI) workloads, or 3) both (e.g., large big data processing tasks). Recent
research efforts [13,14] confirm our intuition that CI workloads perform better when
their subcomponent processes and VMs are spread across separate physical CPU cores
and host servers, respectively, while DI workloads perform better when the VMs (or
processes) are placed on the same host server (or CPU core). For example, by placing
all VMs of a client-server (DI) application on the same physical host, tenfold increases
in throughput have been observed [13]. In contrast, over-contention of CPU resources
by VMs of CI applications have been shown to increase job completion time by as
much as 260% [13].

Therefore, we argue that an ideal data center resource allocation strategy should
consider the characteristics of individual application workloads in addition to the
tradeoffs between the various competing global objectives considered by the data
center operator.

1.1.3 Data Center Networks Are Large

The devices composing a data center network is typically in the order of thousands [5],
making the manual management of such a network tedious and prone to error and
inefficiency. Software-defined networking (SDN) technology offers network adminis-
trators the promise of convenient, efficient, and accurate network management by
enabling the development and deployment of automated NCFs, i.e., SDN control
programs, that automatically perform some set of resource allocation or network con-
figuration actions to achieve operator objectives. However, even automated network
management and orchestration strategies that leverage SDN technology must be scal-
able to handle the large application workloads and physical topologies characteristic
of today’s data centers.
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1.2 Current Data Center Orchestration Approaches
Prior work in data center orchestration can be distinctly categorized as either 1)
NCF synchronization approaches [9], or 2) NCF resource allocation approaches [10,
11]. Synchronization approaches like Statesman [9] view the underlying network as
a shared resource contested for by several NCFs, and seek to arbitrate control of
devices (e.g., switches, servers) or device-components (e.g., switchports, CPU cores)
by detecting and resolving conflict among NCF proposals, whereas existing resource
allocation approaches like Corybantic [10] and Athens [11] evaluate the utility of
various NCF proposals in terms of the allocation of physical network resources (e.g.,
hosts, switches, network links, middleboxes) to support tenant requirements (e.g.,
VMs, application SLA, flow rules, network services) in order to maximize the utility
afforded to the network operator. So while NCF synchronization approaches detect
and resolve conflict among conflicting NCF proposals, and perhaps allow multiple non-
conflicting NCF proposals to be implemented simultaneously, NCF resource allocation
approaches assume that NCF proposals conflict, and aim to select the proposal that
best achieves the objectives of the operator.

1.2.1 NCF Synchronization Approaches

Synchronization approaches to data center orchestration, and network orchestration
more generally, essentially seek to detect and resolve inter-NCF conflict (Figure 1.2)
at a low level by ensuring mutual exclusion of device or device-component control
among competing NCF proposals.

In the Figure 1.2 conflict scenario, NCF-B wants to load balance traffic to minimize
link congestion, while NCF-P wants to power down one of these switches to conserve
power. Clearly, shutting down some switch forwarding an active flow may result
in traffic loss. If the orchestration program allows both NCFs to control the same
resource by attempting to implement both proposals simultaneously or by cycling
between them, then network instability (oscillation) may result [15], e.g., the NCFs
alternate by cycling the power on the resource.

Synchronization approaches to network orchestration have several benefits, but a few
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Figure 1.2: An example of inter-NCF conflict. After implementing a proposal from
NCF-B (“balance”) to reduce link congestion by load balancing an active flow from
Switch A to Switch C via Switch B (perhaps to avoid congestion at Switch D), NCF-P
(“power”) makes a counter-proposal to conserve power by proposing to power down
Switch B. If NCF-P’s proposal is implemented while flows through Switch B are still
active, a loss of traffic will occur at Switch B.

significant drawbacks. One benefit is the speed and scalability by which such an
approach may be implemented. Statesman effectively detects and resolves conflict
among NCF proposals, and further implements a policy checker to ensure that the
resultant network state complies with high-level network policy, all within the order
of seconds for large-scale data centers containing thousands of devices. Synchro-
nization solutions are also well suited to implement proposals from multiple NCFs
simultaneously, as long as the proposals are non-conflicting.

Real-time NCF Synchronization. NCF synchronization solutions equipped to
orchestrate real-time NCFs (RT-NCFs), or NCFs that operate with hard time con-
straints (e.g., at line speed), comprise a subset of NCF synchronization that is gaining
increasing attention from the research community. One recent work by Volpano et
al. [15] offers a unique approach in addressing the SDN orchestration problem for
RT-NCFs by representing NCFs as deterministic finite transducers (DFTs). Where
Statesman, Corybantic, and Athens may be considered “black box” or “grey box” ap-
proaches, the work by Volpano et al. employs a distinctive “white box” approach, by
exposing internal NCF control logic as DFTs. Unlike prior work in SDN orchestration
that uses an orchestration program to act as shim layer between NCF proposals and
the physical network infrastructure, the DFT approach used in [15] enables NCFs to
impart their proposals directly on the physical devices and device components of the
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infrastructure in a way that is free of both conflict and oscillation. This approach
performs direct low-level NCF orchestration without the need to consult an external
orchestration program, making it suitable for the orchestration of RT-NCFs.

However, none of these synchronization approaches consider the exploration of trade-
offs with respect to the utility (e.g., operator-defined objective metrics) offered by a
range different NCF proposals. Thus, we view these approaches as largely orthog-
onal to our work, as we are primarily interested in exploring the utility of various
feasible NCF proposals within the tradeoff space with respect to competing operator
objectives.

1.2.2 NCF Resource Allocation Approaches

NCF resource allocation approaches evaluate competing NCF proposals in terms of
the joint utility offered to the network operator. In contrast to NCF synchronization
approaches, which may implement multiple non-conflicting proposals simultaneously,
NCF resource allocation approaches rank each proposal in terms of its utility offered,
and strive to discover the one that offers the best value to the operator. Current
resource allocation solutions [3, 4, 10, 11, 16] overwhelmingly attempt to reduce the
multi-objective nature of orchestration to a single-objective problem (SOP), either
by optimizing a single objective function subject to the others cast as constraints, as
done in [3, 4]; or by combining multiple objectives into a single global cost function,
as done in [10,11,16].

Single Objective Optimization Approaches

Pure SOP optimization approaches such as [3, 4] are limiting in that only a single
objective metric, such as bandwidth allocation, is optimized; all other objectives
(e.g., fault tolerance, communication latency, power consumption, etc.) are cast as
constraints. Although using such approaches permit the use of specialized heuristics
to quickly and scalably achieve resource allocations that optimize the selected metric,
they are limiting due to the fact that only a single metric is considered.
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Global Cost Minimization Approaches (MOP-to-SOP Reduction) 
Global cost minimization approaches like [10, 11, 16] recognize the inherently multi-
objective nature of data center orchestration, but instead of using a pure multi-
objective optimization problem (MOP) formulation for orchestrating multiple NCFs, 
they instead attempt to combine the individual NCF utility metrics representing 
distinct operator objectives, into a single, consolidated global objective metric, that 
is intended to represent the net “cost” of implementing a proposal to the data center 
operator. The problem with these types of approaches mainly concerns the difficulty 
in effective implementation. Because all of the NCF utility metrics are combined 
into a single global cost function, some method of NCF weighting must be used to 
ensure that the proposal selected (i.e., the discovered proposal that yields the lowest 
value of the global cost function) actually achieves the goals of the operator. But 
the operator may not have a particular set of NCF weights a priori, and it may take 
several successive runs using different weightings in order to find weights that produce 
a desirable proposal. Furthermore, certain objectives, such as bandwidth allocation 
and fault tolerance, may be disparate or orthogonal with respect to one another. 
Thus, it may not be possible to combine such objectives into a single global 
objective function in a way that preserves operator intent.

1.2.3 Summary

Because we are primarily interested in comprehensively exploring the utility of various
feasible proposals within the tradeoff space with respect to competing NCFs, we
choose to focus on the formulation of the data center orchestration problem as a
NCF resource allocation problem. Hence, our work is motivated by existing resource
allocation approaches, which largely attempt to optimize SOP formulations of the
orchestration problem. However, although SOP formulations of the orchestration
problem permit faster solutions, solving a SOP yields only a single solution within
a potentially vast tradeoff space. Furthermore, many current approaches use search
algorithms based on greedy heuristics [4, 10, 11], which may prematurely converge to
suboptimal local maxima when applied to non-convex optimization problems.

Thus, we believe it prudent to explore an alternative formulation based on the classical
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multi-objective optimization problem (MOP) literature [17–19], where the goal is to
enumerate a diverse set of Pareto-optimal solutions [19] among competing NCFs, i.e.,
no solution can be improved in any objective without causing a degradation in at
least one other objective.

1.3 Emerging Trends For Rethinking Data Center
Orchestration

Most of the limitations with current techniques for data center orchestration stem
from assumptions made about the types of application workloads to be hosted or the
specific objective metrics to be optimized. As a result, the large body of work related
to orchestration and resource allocation in data center networks mainly consists of
disparate specialized solutions for specific problems rather than a cohesive body of
general solutions applicable to a wide range of problems. However, due to the over-
whelming industry migration from the smaller, traditional, task-specific data centers
of the past, to the larger, cloud-based, multi-tenant data centers of the future, data
center operators are hosting an increasingly wide range of diverse applications with
different requirements and optimization preferences.

There have been several recent directions arising from the research community to
address these new challenges: multi-objective orchestration, application-aware or-
chestration, and scalable orchestration.

1.3.1 Multi-Objective Orchestration

Corybantic [10], Athens [11], and NFC [16] are recent data center orchestration pro-
posals that illustrate the continuing trend towards orchestration solutions that at-
tempt to jointly optimize multiple objectives.

In Corybantic [10], the authors view SDN orchestration as a multi-objective problem,
and attempt to reduce it to a SOP transforming the performance criteria of each
NCF, or module as called by the authors, into a common representative currency
interpretable by the orchestrator. Corybantic proceeds by soliciting each NCF for its
proposed network state, evaluating the cost each proposal in terms of the common
currency, and finally selecting the most cost-effective proposal for implementation.
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Unfortunately, the Corybantic approach suffers from three significant pitfalls: 1)
Expressing the performance criteria of disparate NCFs in terms of a singular, universal
metric may not be feasible due to disparate objectives. 2) The range and diversity
of candidate network states are limited to proposals made by specialized NCFs, and
hence unlikely to achieve mutually beneficial inter-NCF compromises. Hence a large
portion of the state space may be unexplored. 3) Corybantic uses a iterative selection
process based upon a single greedy criterion, i.e. it selects the NCF proposal that
yields the lowest “common currency,” a single global metric that each NCF utility
metric is reduced to via an operator-specified weighting. Hence, it is essentially a hill
climbing approach, and thus may converge suboptimally towards a local minima.

Another related work that uses a multi-objective approach towards orchestration, is 
Athens [11]. Athens builds on Corybantic by suggesting a family of voting procedures 
available to each NCF, better enabling them to reconcile disparate objectives by 
soliciting for each other's feedback in terms of “votes”. So while Athens 
partially addresses the first of the Corybantic pitfalls described above, it is still 
subject to pitfalls 2) and 3) of Corybantic as described in the previous paragraph.

Finally, the authors of the recent Network Function Center work [16], while using a
similar MOP to SOP reduction as Corybantic and Athens in their problem formula-
tion, recognize the pitfalls of solely using greedy NCF-specific heuristics to perform
non-convex SOP optimization, and choose to use genetic algorithms to help overcome
the issue of premature algorithm convergence to local optima. However, although
the Network Function Center provides better solutions to non-convex SOPs, it is still
limiting in its formulation as a SOP for reasons described previously. It is also un-
clear how well the Network Function Center approach enumerates the tradeoff space
between multiple objectives, as all SOP component metrics and weightings are deter-
mined a priori and only a single resultant network state is produced as a solution.

In summary, the chronological evolution of related work in data center orchestra-
tion from Corybantic (2013) to Athens (2014) to Network Function Center (2015), 
represents a strong research direction towards multi-objective formulations for the 
orchestration problem and better approaches for finding good s olutions. However, 
what’s still missing from the state-of-the-art is a pure MOP formulation of the or-
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chestration problem and a corresponding approach to comprehensively explore the
tradeoffs between multiple NCFs, as proposed in this dissertation.

1.3.2 Application-Aware Orchestration

As opposed to focusing solely on optimizing the objectives of data center operators,
such as cumulative resource usage, there is an increasing trend in the research com-
munity to leverage additional opportunities to intelligently orchestrate application
workloads to improve per application performance of all hosted applications. Specifi-
cally, recent studies [13,14] demonstrate that different types of workloads contend for
different types of resources. Consequently how VMs of an application are relatively
positioned can significantly impact the performance of an application. For example,
it would be advisable not to co-locate VMs of computation intensive workloads to
avoid unnecessary CPU contention while at the same time, position VMs of the same
data intensive workload as close as possible to reduce both bandwidth contention and
communication latency [14].

But although the concept of application-aware orchestration is not new, existing so-
lutions that claim to support application-aware orchestration, such as [20–22], only 
do so with respect to certain types of applications. For instance, [20] only considers 
data intensive applications, [21] strives to minimize network traffic subject to physical 
server resource constraints, similar to [23], and [22] focuses primarily on computation 
and memory intensive high-performance computing applications. Reference [24] 
considers fair-ness in multi-tenant datacenter environments by searching for 
placements of tenant applications that minimize the sum of network diameter of all 
tenants, but does not consider different application types. And while NETMAP [25] 
considers tenant applications with different requirements, it only considers network 
traffic and fault tolerance requirements of applications, and thus does not speak to the 
placement of computationally intensive or storage intensive applications.

None of these provides a general solution for best allocating different types of indi-
vidual application workloads (e.g., computation or memory intensive vs. data or 
network intensive) within a shared multi-tenant data center to jointly achieve tenant 
(cloud customer) and operator (cloud provider) objectives.
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1.3.3 Scalable Orchestration

Maintaining fast speeds of execution (e.g., order of seconds) for online orchestration
algorithms, i.e. algorithms that allocate data center resources to new tenant appli-
cation workload requests as they arrive, is yet another clear trend in the research
community, especially as the size of data center network topologies approaches large-
scale (i.e., thousands of physical hosts, tens of thousands of VM slots). The reason
for this trend is likely tied to the overwhelming increase in the number and size of
application workloads hosted by cloud data centers, as well as the increases in size
(i.e., number of devices) of the physical topologies that make up the networks of these
data centers.

However, despite this increasing need for scalable orchestration approaches, recent
work has been struggling to maintain fast resource allocation times as the size of
workloads and physical topologies approach large-scale, especially when multiple ob-
jectives are considered. Specifically, the approach in [23] optimally minimizes link
congestion in the order of minutes for 1024 VM slots, but may be slowed to the order
of hours when other objectives are considered [16]. In [16] a genetic algorithm is used
to approximate a minimal solution to a five-component weighted cost function in the
order of tens of seconds, but only scales to a relatively small 64-server topology. Other
online VM placement solutions, such as [26] and [27], consider large and distributed
data center scenarios, respectively, but do not explicitly state execution times for
these scenarios. Single-objective orchestration approaches such as [3, 4] achieve exe-
cution time in the order of seconds for 2000+ host, 40000+ VM slot topologies, but
are limiting in that they only approximate a solution to a single objective function,
namely bandwidth usage, given application survivability constraints. As such, while
the approaches in [3, 4] have proven scalable, they are not generally extensible to
multi-objective scenarios.

What’s needed is a scalable orchestration solution extensible to a multitude of dis-
parate objectives that still achieves fast execution times (e.g., order of seconds) for
allocating large application workloads (e.g., hundreds of VMs) within large data cen-
ter networks (e.g., thousands of servers).
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1.4 Key Design Principles
This dissertation describes the design, implementation, and evaluation of new ap-
proaches that address two key challenges: 1) achieving visibility and consideration
of potential tradeoffs among a multitude of NCFs to accommodate a wide range of
operator objectives and network conditions, and 2) achieving efficient allocations of
network resources to application workloads in a manner that jointly considers the
objectives of the operator, and the preferences of each individual application. There
are two key design principles that guide the design of these new approaches:

Comprehensive Tradeoff Exploration Principle. A data center orchestration
program at minimum must solicit and rank proposals from all NCFs. If an operator
knows a priori how to jointly model multiple objectives with a single ranking metric,
the orchestrator may optimize the allocation based on the metric in order to find a
“best compromise” solution for all the objectives. However, this approach places a
heavy burden on the operator to create the right ranking model for his/her network.
More importantly, it is an open question whether a search based on such joint models
can cover the potentially vast tradeoff space between multiple objectives. Table 1.1
illustrates the shortcomings of current orchestrators with respect to three desirable
design considerations. Note that none of the current solutions offer a diverse set of
tradeoffs among separate NCFs.

Thus, we argue that formulating the orchestration problem as a MOP that explicitly
represents each distinct operator objective, is a more effective way to discover globally
optimal compromises when all NCFs and operator objectives are considered. By
maintaining a wide range of solution candidates and applying the concepts of natural
evolution, i.e., performing mutations and recombinations of high-fitness candidates,
a diverse set of nondominated proposals may be generated and presented to the
operator for consideration. This is better than proposing a single “best” allocation,
since operator priorities are likely to be fluid to accommodate rapidly changing tenant
demands and network conditions.

Logical Application Workload (LAW) Principle. Because different types of
applications contend for different types of resources, for a given application workload,
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Table 1.1: Current network orchestration solutions in the context of three design con-
siderations, including the key design principle of comprehensive tradeoff exploration,
which none of these solutions offer.

some feasible resource allocations for it may be better than others. For instance, two
distinct allocations for a given workload may use the same number of VM slots, but
one allocation may be better than the other if the relative positioning of its VMs
achieves strictly less resource contention while maintaining the same values of global
operator objectives with respect to the other.

Moreover, we recognize that by independently simulating the desired placements of in-
dividual applications in a contention-free environment, e.g., an empty physical topol-
ogy, we can precompute the ideal allocations of an application’s VMs for a wide range
of workload profiles, and then subsequently treat the collection of individual “per VM”
allocations for a workload as single atomic unit. We term each of these atomic units
a logical application workload (LAW). LAWs are important because current per VM
approaches for placing workloads into data centers consisting of thousands of servers
does not scale very well. Specifically, execution times for such resource allocation
approaches range from the order of hours at worst to the order of tens of seconds at
best, and these times only get worse as the sizes of application workloads and phys-
ical topologies increase, which, according to current trends in data center growth, is
already happening [2].
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By allocating LAWs, which typically consist of tens or even hundreds of VMs, as op-
posed to individual VMs, algorithms for efficiently allocating large data center work-
loads become scalable, permitting sub-second placement times. And since LAWs are
explicitly constructed to minimize contention from the perspective of the VMs belong-
ing to the application, resultant allocations comprised of successive LAW placements
come with some guarantees of application performance, which may assist operators
in ensuring that they meet required SLAs.

1.5 A Scalable Approach To Comprehensive and
Application-Aware Data Center Orchestration

Following the key design principles, we propose a scalable approach to comprehensive
and application-aware data center orchestration consisting of two conceptually dis-
tinct but thematically coherent algorithms: 1) an Evolutionary Algorithm for SDN
Orchestration (EASO) that comprehensively explores the tradeoff space among mul-
tiple objectives, and 2) a scalable algorithm for rapidly constructing and allocating
Logical Application Workloads (LAWs) to jointly achieve operator objectives and ap-
plication preferences. We have built prototypes for both algorithms and evaluated
them with realistic workload traces in simulated large-scale data center environments.

EASO [28]: Orchestrating Network Control Functions via Comprehensive
Trade-off Exploration. In this contribution, we formulate SDN orchestration as a
multiobjective optimization problem, and present an evolutionary approach designed
to explore the tradeoff space between multiple NCFs comprehensively and avoid local
optima. For an instance of the VM allocation problem subject to three independent
NCFs optimizing network survivability, bandwidth efficiency, and power consumption,
respectively, we demonstrate that our approach can enumerate a wider range of, and
potentially better, solutions than current orchestrators, for data centers with hundreds
of switches, thousands of servers, and tens of thousands of VM slots.

LAW [29]: An Application-Aware Approach to Scalable Online Placement
of Data Center Workloads. Currently, operators allocate workload VMs primar-
ily in an application-agnostic fashion, focusing on minimizing total resource usage.
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In this contribution, we first show that such allocations can be suboptimal when
intra- and inter-application resource contention is present, and then present a new
application-aware approach that explicitly models the resource preferences of indi-
vidual workloads. Further, we propose a new logical application workload (LAW)
abstraction to enable precomputation of the required relative positioning of an appli-
cation’s VMs and allocation of these VMs in a single atomic step, leading to online
algorithms that are one order of magnitude faster than existing per VM placement
solutions. We then develop a statistical extension of LAW to add flexibility in char-
acterizing application requirements and to support prioritization of workloads. Using
realistic workload traces and physical topologies, we evaluate our algorithms in a sim-
ulated large-scale data center setting, and demonstrate their performance advantages
and potential tradeoffs versus existing solutions.

The remainder of this dissertation is organized as follows: Chapter 2 presents EASO,
implemented via an evolutionary algorithm for comprehensively exploring tradeoffs
between multiple NCFs. Chapter 3 represents the LAW principle, implemented via
scalable LAW construction and allocation algorithms to achieve specified operator ob-
jectives while minimizing resource contentions among individual applications. Chap-
ter 4 discusses contributions of each separate principle when used independently, and
also describes how the two principles may be combined to achieve the benefits of
both. We then present ideas for future work and provide conclusions.
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CHAPTER 2:
Orchestrating Network Control Functions via

Comprehensive Trade-off Exploration

This chapter focuses on the goal of providing several workable, alternative solutions
to the orchestration problem to a decision maker. We argue that this goal is best
achieved by comprehensively exploring the tradeoff space among multiple network
control functions (NCFs), each designed to achieve a specific operator objective. Sim-
ply striving to minimize a global cost function representative of cumulative resource
usage is not sufficient, as disparate objectives, such as fault tolerance and security
enforcement, exist and are important to tenants and data center operators alike. In-
stead, we choose to formulate the orchestration problem as a pure multi-objective
problem that explicitly represents each operator objective individually, and subse-
quently propose EASO, an evolutionary approach that provides a set of desirable
tradeoffs to the data center operator, given a set of tenant application workload re-
quirements.

For an instance of the orchestration problem subject to three independent NCFs
attempting to optimize network survivability, bandwidth efficiency, and power con-
servation, respectively, we demonstrate that our approach can enumerate a wider
range of, and potentially better, solutions than current orchestrators, for data centers
with hundreds of switches, thousands of servers, and tens of thousands of VM slots.

2.1 Introduction
In this contribution, we defer the detection and resolution of NCF conflicts to other
work, such as [9, 15], and choose to focus on exploring the utility of various feasible
NCF proposals within the tradeoff space with respect to competing NCFs. We define
this notion of utility with respect to the NCFs themselves, as done in [10, 11], under
the assumption that each independent NCF has a corresponding utility function that
it seeks to maximize.
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Using this notion of NCF utility, we define the NCF orchestration problem as a multi-
objective optimization problem (MOP) where each NCF utility function comprises a
component of the optimization problem. Prior work [3, 4, 10, 11, 16], overwhelmingly
attempts to reduce the multi-objective nature of orchestration to a single-objective
problem (SOP), either by casting multiple objectives in terms of a single global utility
function [10,11,16], or by optimizing one objective function subject to the others cast
as constraints [3, 4].

Although SOP formulations of the orchestration problem permit faster solutions,
solving a SOP yields only a single solution within a potentially vast tradeoff space.
Furthermore, many current approaches use search algorithms based on greedy heuris-
tics [4, 10, 11], which may prematurely converge to suboptimal local maxima when
applied to non-convex optimization problems. Thus, we believe it prudent to explore
an alternative, more basic formulation based on the classical multi-objective opti-
mization problem (MOP) literature [17–19], where our goal is to enumerate a diverse
set of efficient solutions among competing NCFs, i.e. each solution in the set can-
not be improved in any objective without causing degradation in at least one other
objective.

In the following sections, our contribution is three-fold. First, we present a novel
MOP problem formulation for SDN orchestration. Second, we describe an evolution-
ary approach for enumerating a wide range of efficient NCF proposals, scalable to
topologies of thousands of hosts and hundreds of switches. Third, we present new
metrics and use them to evaluate our approach vs. current solutions in the context
of the VM allocation problem.1

2.2 Rethinking Orchestration
Orchestrating multiple NCFs to achieve and maintain stable and desirable network
operating conditions face major technical challenges. To illustrate them, consider the
following simplistic scenario where a data center must allocate virtual machines (VMs)
that can be supported by its physical infrastructure to a set of tenant applications.

1Although we focus on VM allocation NCFs in this work, we are confident that our approach is
generally applicable for orchestrating NCFs of any virtual network function.
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(a) NCF-S

(b) NCF-B (c) NCF-P

Figure 2.1: Example proposals from NCF-S, NCF-B, and NCF-P. Green slots are
for VMs of R1, red R2, and gold R3. We assume that each server, ToR switch,
aggregation switch, or core switch uses 1, 2, 2.5, and 3 units of power, respectively.

We have chosen to study VM allocation because 1) it is one of the important first
steps of any data center operation, and 2) the problem has an extensive collection of
prior work for us to compare to our contribution.

In order to specify requirements for instances of the SDN orchestration problem,
we use <VM, BW> pairs, where the first value in the tuple represents the number
of VMs required, and the second value represents the inter-VM bandwidth (BW)
requirement. Suppose three independent tenant applications R1, R2, and R3 have
requirements <5, 50 Mbps>, <5, 100 Mbps>, and <5, 150 Mbps> respectively.
Suppose the underlying physical infrastructure has a simple tree topology, consisting
of one core switch as root, two aggregation switches and four top of rack (ToR)
switches, four host servers per ToR switch, and two VM slots per host server, where
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a “VM slot” is defined as a standard physical resource unit (e.g., CPU, Memory)
provisioned to a VM. Therefore, the VMs are to be allocated against 4× 4× 2 = 32
possible slots.

Suppose the data center utilizes three different NCFs simultaneously: NCF-S, NCF-B
and NCF-P. NCF-S is designed to maximize the applications’ worst case survivabil-
ity (WCS) over failures of ToR switches and physical servers with a preference for
spreading VMs of each application across separate racks and servers (Figure 2.1a).
Specifically, an application’s ToR WCS is defined as the fraction of its VMs that sur-
vive a single worst case ToR switch failure [5]. In this scenario, we use the mean ToR
WCS (across all tenants) as a representative metric for NCF-S. NCF-B is designed to
minimize the mean link BW reservation, allocated using the hose model [30]. Using
the hose model, each network link utilized by a tenant application divides the tenant
application subtree into two components, and the bandwidth needed on this link for
the tenant application is determined by multiplying the per-VM bandwidth required
by the application and the number of VMs on the smaller of the two components,
as done in [30]. Thus, NCF-B has a preference for consolidating VMs of the same
application as close to one another as possible, e.g., placing on same server or rack
(Figure 2.1b). NCF-P aims to minimize total power consumption by placing VMs on
the fewest number of racks and servers, thus allowing unused resources to be pow-
ered down (Figure 2.1c). One candidate proposal of allocation can dominate, i.e.„
be strictly better than, another if it achieves better performance for at least one ob-
jective and no worse performance for each other objective. However, sometimes, two
candidate proposals cannot be simply ranked against each other as each is better for
a different objective; in this case, we say they are nondominated with respect to each
other, which is the case for any pair of proposals in Figure 2.1.

An orchestrator at minimum must solicit and rank candidate proposals from all NCFs.
Clearly, the network cannot execute all three proposals in Figure 2.1. Nor should it
be asked to somehow accommodate each by time-slicing them. If an operator knows
a priori how to jointly model the three objectives with a single ranking metric, the
orchestrator may optimize the allocation based on the metric in order to find a “best
compromise” solution for all the objectives. However, this approach places a heavy
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burden on the operator to create the right ranking model for his/her network. More
importantly, it is an open question whether a search based on such joint models can
cover the potentially vast tradeoff space between the objectives. Compounding the
problem is that the NCFs are supposed to come from third-party vendors, and thus
are likely to be black-box solutions to the operator. The operator could conceivably
collaborate with the NCF vendors to create “grey-box,” or even “white-box” solutions
where he/she has access to the internal logic of the NCFs. While doing so may reduce
the search space for finding an acceptable compromise, it remains a challenge for an
orchestrator to adequately explore the multi-NCF tradeoff space for large network
configurations.

(a) Mutated Power Cons. (b) Recombined BW/WCS

Figure 2.2: Mutated power conservation proposal and recombined BW conservation
and survivability proposal.

In prior work, e.g., Athens [11] and Corybantic [10], all candidate solutions are exclu-
sively generated by the NCFs. Assuming that each NCF generates one proposal, the
initial population in the context of this example is limited to the three proposals de-
picted in Figure 2.1. It may be possible for each NCF to generate multiple proposals,
but even so, it seems unrealistic to expect a specialized NCF to generate mutually
beneficial compromises without knowledge or understanding of the performance crite-
ria of the others. Corybantic and Athens then proceed by selecting the NCF proposal
that maximizes some global utility function (e.g., votes, cost-effectiveness), and may
iteratively solicit the NCFs for incremental counter-proposals to the previously se-
lected allocation until the greedy criterion cannot further be improved by any NCF
proposal.
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The problem here is that even if a specialized NCF is able to make effective counter-
proposals, which may itself be challenging, the region of the search space enumerated
by such proposals is limited to what is reachable from the previously selected proposal.
For instance, if the power conservation proposal depicted in Figure 2.1c is selected
initially, then it may be the case that while the proposal in Figure 2.2a is reachable
via a series of incremental counter-proposals, the proposal in Figure 2.2b may not be.
As a result, the final proposal obtained may not be globally optimal, i.e., it may be
dominated by another feasible, but unexplored allocation.

In contrast, we argue that mutation and recombination of proposals in an NCF-
agnostic manner, in addition to NCF-specific heuristic mutations, and subsequent
evaluation as a MOP comprised of distinct NCF performance criteria, is a more ef-
fective way to discover “globally optimal” compromises. A mutation is similar to a
counter-proposal in [10,11] in that it is a small-scale change to some previous alloca-
tion in an effort to guide the search towards a local optimum, whereas a recombination
is large-scale change produced by combining desirable elements of two different states
with the aim of exploring a new frontier of the state space to subsequently discover
new local, and possibly global, optima. Furthermore, by maintaining a wide range of
solution candidates and applying the concepts of natural evolution, i.e., performing
mutations and recombinations of high-fitness candidates, a diverse set of nondomi-
nated allocation alternatives may be generated and presented to the network operator
for consideration. If an operator requirements are fluid then this approach offers mul-
tiple prospective proposals for consideration as opposed to a single “best” one, which
may be undesirable.

For instance, consider a potential mutation of the power conservation proposal, and
a potential recombination of the survivability and BW conservation proposals, pre-
sented in Figure 2.2. Note that while both the mutated power conservation proposal
(Figure 2.2a) and the recombined survivability and BW conservation proposal (Figure
2.2b) each dominate a predecessor state (Figures 2.1c and 2.1b, respectively), these
proposals are nondominated with respect to one another. Although the proposal in
Figure 2.2b offers better ToR WCS, it uses more power and BW than the proposal in
Figure 2.2a. Since neither proposal dominates the other, both should be maintained
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(a) Mutated from Fig. 2.2a (b) Mutated from Fig. 2.2b

Figure 2.3: Two compromises from successive rounds of recombination and mutation
of nondominated candidates.

as desirable solution candidates.

This is especially critical when the operator requirements are complex. The pro-
posal in Figure 2.2b is more appropriate for mission critical applications that require
maximum fault tolerance, while the proposal in Figure 2.2a is better suited towards
general applications that do not require such a high level of availability. Depending
on the criticality of the tenant applications R1, R2, and R3, the operator can easily
implement either proposal. In contrast, [10, 11] would discard one of these desirable
proposals, leaving the operator with only one proposal without presenting further
desirable evolutions (as shown in Figure 2.3) to the operator.

2.3 Multi-Objective Optimization Formulation
In this section, we formally model VM allocation involving M tenant applications,
N NCFs, and physical topology P , as a MOP. Let X represent the set of all possible
allocations; each instance x ∈X captures a proposed allocation (e.g., for the Section
II scenario, x is a 32-element vector describing which application, if any, occupies each
of the VM slots of P ). Let Xf ⊆X, termed feasible allocation set, denote the subset
of all allocations that can meet the requirements of all applications (e.g.„ quantity of
VMs, intra-VM network bandwidth, etc).

Let fi() denote the utility function used to evaluate the goodness of an allocation
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with respect to NCF i, i = 1, ...,N (e.g., ToR WCS for NCF-S, mean link BW for
NCF-B, and total power usage for NCF-P). We believe this function will most likely
be defined by the data center operator to account for local conditions, possibly with
input form the NCF vendor. Therefore, for a proposed allocation x∈Xf , the objective
vector y = (f1(x),f2(x), ...,fN (x)) precisely captures its operational merit from the
perspectives of all objectives.

Instead of computing a weighted sum or using other techniques to reduce the objective
vector to a single scalar metric and then finding one “best” allocation with respect
to that metric, as done in prior work, we leverage the classical MOP literature [17]
to look for a set of solutions that illuminates the entire trade-off space of the diverse
objectives. First, we formally define when two allocations can be ordered in the N -
dimension objective vector space, i.e., when one dominates the other, and when they
cannot because they may be preferred for different objectives.

Def. 1. (Pareto Dominance [19]) For any two allocations x1,x2 ∈Xf ,

(i) x1 � x2 (x1 dominates x2) iff ∃i,fi(x1) > fi(x2)
and ∀j 6= i,fj(x1)≥ fj(x2).

(ii) x1 ∼ x2 (x1, x2 are nondominated w.r.t. each other)
iff ∃i, j. i 6= j and fi(x1) > fi(x2) and fj(x2) > fj(x1).

This concept of Pareto dominance allows us to define the optimality criterion for the
MOP formulation. If some allocation, x, is not dominated by any other allocation,
then this means that x is optimal in the sense that it cannot be improved in any
objective without causing degradation in at least one other objective. Such solutions
are referred to as Pareto-optimal [19].

Def. 2. (Pareto Optimality [19]) An allocation x is Pareto-optimal regarding the
feasible allocation set Xf iff x ∈Xf and for no other proposal x′ ∈Xf is x′ � x.

The entirety of all Pareto-optimal solutions is called the Pareto-optimal set, denoted
by Xp; the corresponding objective vectors form the Pareto-optimal front or surface,
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denoted by Yp. Now a MOP formulation of the VM allocation problem is simply as
follows.

Def. 3. (MOP for SDN Orchestration)

maximize y = (f1(x), f2(x), ..., fN (x)), i.e., enumerate all Pareto-optimal so-
lutions,

subject to x ∈Xf and additional criteria such as lower bounds for fi(x)’s.

2.4 Evolutionary Approach
Prior MOP work [18, 31, 32] shows that an evolutionary approach (i.e., genetic al-
gorithm), which keeps track of potential nondominated solutions and evolves (i.e.,
expands and improves) them via mutation and recombination, can ensure 1) subopti-
mal local maxima tend to be avoided, and 2) a wider range of solution candidates will
be considered vs. a greedy approach. In this section, we present such an evolutionary
algorithm, termed Evolutionary Algorithm for SDN Orchestration (EASO), to solve
the MOP problem formulated in the previous section.

2.4.1 EASO Specification

A specification of the EASO algorithm is provided below. In addition to Pareto-
dominance, fitness assignment in Step 2 is also based on crowding distance, which
measures the uniqueness of a candidate solution with respect to other members in
the set, as done in [31,32].

Algorithm 2.1. EASO

Input: K: number of generations; L: external set size;
P : physical topology tree; s: mutation size

Output: solution set Xs

Step 1:Initialization:
a) Set initial population A0 = ∅, k = 0
b) Set initial external set ES0 = ∅
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c) Solicit each of the N NCFs for its proposed allocation
x ∈Xf and add x to A0

d) Add (L−N) randomly generated allocations to A0

Step 2:Fitness Assignment / Termination:
a) Calculate fitness F of allocations in Ak ∪ESk

b) Derive nondominated feasible set Xs from Ak ∪ESk

c) If k ≥K then return Xs

Step 3:Update of external set:
a) If |Xs| > L then

Remove (|Xs|−L) worst fitness allocations from Xs

b) Else if |Xs| < L then
Add (L−|Xs|) best fitness allocations of Ak to Xs

c) Set ESk+1 = Xs

Step 4:Recombination:
a) Set mating pool MP = Xs, child pool CP = ∅
b) For each NCF i do
1) Sort MP in ascending order of fi

2) For a in 1 to b|MP |/2c do
b = (|MP |+1)−a

x = RECOMBINE(MP [a],MP [b])
Add x to CP

Step 5:Mutation:
a) For each NCF i do
1) For each allocation x ∈MP do

u = MUTATE(x,s, i,goal = “Improve”)
w = MUTATE(x,s, i,goal = “Degrade”)
Add u,w to CP

Step 6:Update Population:
a) Set Ak+1 = CP , k = k +1; Goto Step 2
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2.4.2 Evolutionary Primitives

In EASO, the MUTATE primitive procedure takes an NCF i as an input parameter,
and uses an NCF-specific heuristic to attempt to relocate up to s VMs (mutation size)
in order to improve (or degrade) the value of fi. Although not strictly necessary,
the degrade step is included in order to increase entropy and help to maximize the
diversity of the candidate solution set. Because a tradeoff space is assumed, by
intentionally degrading the utility of one NCF, another may benefit. For the example
scenario described in Section 2.2, the following NCF-specific mutation heuristics are
used within the MUTATE procedure. Here, we use the term affinity to refer to the
number of VMs of a particular application residing in the same subtree.

• f1 (ToR WCS) : 1) Identify the application m with the lowest value of ToR
WCS. 2) Relocate up to s VMs of m from the highest affinity subtree of the
physical topology to some number of lower affinity subtrees.
• f2 (Bandwidth Conservation) : 1) Identify the application m with the highest

BW usage. 2) Relocate up to s VMs of m from the lowest affinity subtree to
higher affinity subtrees.
• f3 (Power Conservation) : 1) Identify the application m using the highest num-

ber of racks (and servers in the case of a tie). 2) Remove up to s VMs of m

from the lowest affinity subtree and replace them using a “first-fit” bin packing
heuristic.

In contrast toMUTATE, the RECOMBINE primitive procedure is NCF-agnostic,
and simply performs a merging of two input allocations by randomly selecting VM
placements from each to form a new output allocation. To help encourage diversity
during the recombination step, the mating pool MP is sorted in each dimension fi,
and for each sorting, each candidate solution is recombined with its counterpart at
the opposite end of the fi spectrum, i.e., first vs. last, second vs. second-to-last, etc.

2.4.3 Complexity Analysis

Ideally, the solution set Xs returned by EASO is equal to the Pareto-optimal set
(denoted by Xp). However, the size of the feasible allocation set Xf , and hence the
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time required to totally enumerate Xp, grows combinatorially with the number of
switches and servers in the physical topology tree (denoted by |P |). For nontrivial
values of |P |, e.g., the large topology used in Section 2.5.3, totally enumerating Xp

may require prohibitively large EASO input parameters. In these cases, Xs is rather
an inner approximation [18] of Xp, i.e., elements in Xs may be dominated by those
in Xp.

Space Complexity: The maximum population size contains |CP |= N ∗ (L/2+2L) =
5NL

2 states, and each state contains |P | elements, hence yielding a space complexity
of O(N ·L · |P |).

Time Complexity: Each of the 5NL
2 proposals are evaluated by N utility functions,

and each utility function evaluates at most |P | elements of each proposal, for a re-
sultant complexity of O(N2 ·L · |P |). Fitness assignment requires at most O(N ·L2)
comparisons using the scheme presented in [32], RECOMBINE is called NL

2 times,
and MUTATE is called 2NL times. Each call to MUTATE performs at most s

VM reallocations, and the main algorithm loop runs K times. Hence, the total time
complexity of this algorithm is O(N2 ·L2 · |P | ·K · s).

2.5 Evaluation
In this section, we evaluate EASO using two topologies. First, the simplistic scenario
described in Section II is used to illustrate that EASO can produce more diverse,
and potentially better solutions than current orchestators. Then, a relatively large
topology [4] is used to illustrate that EASO scales to large data centers.

2.5.1 Performance Metrics

As discussed in Section 2.4.3, for nontrivial topologies, EASO may only (inner) ap-
proximate the Pareto-optimal set Xp. To evaluate the accuracy of this inner approx-
imation (denoted by Xs), we propose two metrics: distance and coverage to compare
Xs against Xp using their corresponding sets of objective vectors, i.e., images in the
objective vector space. Specifically, let Ys and Yp denote the image sets of Xs and
Xp, respectively. (When it is infeasible to obtain Xp and Yp due to nontrivial values
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of |T |, we use the “constraint method” well known in MOP literature [17] to first con-
struct an outer approximation of Yp, and then use it in place of Yp in equations (2.1)
and (2.2) to compute distance and coverage. See Section 2.5.3 for more details.) The
distance of an objective vector y ∈ Ys is defined as follows.

Def. 4. (Distance)
distance(y, Yp) = min

w∈Yp

dist(y,w), (2.1)

where dist(y,w) represents the Euclidean distance between points y and w.

Once the distance of each point y ∈ Ys has been calculated, we calculate the mean,
min, and max distances of points in Ys to provide a set of distance measures repre-
sentative of the solution set as a whole.

The current orchestrators, such as [10, 11] strive only to find a single solution that
minimizes distance, without regard for the potentially vast tradeoff space. In contrast,
a novel aspect of our approach is the enumeration of a set of nondominated tradeoffs.
Hence, to evaluate the area of the tradeoff space covered by a solution set produced
by EASO or similar algorithms, we propose the coverage metric (Def. 5), representing
the fraction of points in the reference image set Yp that are “covered,” i.e., nearest
to objective vectors in Ys. Hence, solution sets with higher coverage values are more
desirable.

Def. 5. (Coverage)

coverage(Ys, Yp) =
|⋃y∈Ys

nearest(y,Yp)|
|Yp|

, (2.2)

where nearest(y, Yp) = argminw∈Yp
dist(y,w).

2.5.2 EASO vs. Current Orchestrators

In order to illustrate the unique merits of EASO vs. the current orchestrators, we
developed GASO, a greedy version of EASO, to emulate methods proposed in [10,11].
In [10, 11], the authors do not explicitly state the mutation heuristics used by inde-
pendent NCFs to generate incremental counterproposals, but rather defer this issue
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to future work, whereas the GASO mutation heuristics (identical to EASO, Section
2.4.2) explicitly specify how such counterproposals are suggested. Additionally, we
enhance GASO to enumerate not just one solution, but a set of solutions, as described
later in this section.

GASO has four notable differences vs. EASO: 1) the recombination step is omitted,
2) the Pareto-based fitness function F is replaced with the global objective function
Fglobal(x) = w1(f1(x)) + w2(f2(x)) + ... + wN (fN (x)) where ~w is an N -dimensional
NCF weight vector and wi represents the weighting value for NCF i, 3) the external
set ES contains only a single member (L = 1): the solution candidate with the highest
value of Fglobal, and 4) the algorithm terminates when no NCF-specific mutation of
the external set member yields a higher Fglobal value.

To compare GASO to EASO, we generated a comparable set of GASO solutions for
the Section 2.2 scenario by way of parametric analysis over a set of fixed aspira-
tion levels (lower bounds) for f1 (WCS), and different weightings for f2 (BW) and
f3 (power). For each aspiration level of f1, f1 ≥ 0.00,0.066, ...,0.594; we used two
different weightings: ~w = (1,4,2), which clearly favors f2 over f3, and ~w = (1,2,4),
which conversely favors f3 over f2. f1 maintains a minimum weighting here, as the
aspiration levels force an enumeration over the its range.

For EASO, we set the size of the external set L = 25, the number of generations K =
25, and the mutation size s = 5. EASO consistently enumerated all 14 Pareto-optimal
solutions2 for each of 100 simulation3 runs, represented by the XEASO

s solution set
(Table 2.1).

For GASO, we performed multiple runs via parametric analysis, across the range of
all mutation sizes (s = 1,2, ...,15). The resulting set of solutions, XGASO

s , represents
the best solutions produced by GASO throughout all 270 simulation runs. GASO was
only able to enumerate six of the fourteen distinct Pareto-optimal states (Table 2.1).

2In this simplistic scenario, we were able to enumerate the entire Pareto-optimal front Yp (14
solutions) via brute force enumeration, and hence used Yp as a basis of comparison for EASO and
GASO.

3The simulation consists of approximately 2500 lines of Java code, and was run on a Linux VM
allocated 8GB of RAM and 2 x vCPUs. The host PC (laptop) was running 64-bit Windows on an
Intel 2.4 GHz quad-core processor with 12 GB of RAM.
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Table 2.1: XEASO
s and XGASO

s nondominated solutions. The “Allocation” column
represents the allocation of VMs to servers on the four different racks, e.g., [(3,5,0),
(2,0,5), (0,0,0), (0,0,0)] represents the assignment of 3 VMs of R1 and 5 VMs of R2
to Rack 1, 2 VMs of R1 and 5 VMs of R3 to Rack 2, and none to Racks 3 and 4.

Table 2.2: EASO vs. GASO in distance and coverage of their solution sets w.r.t. Yp,
and in avg. execution time.

Note that XGASO
s alloc. #7, although nondominated with respect to XGASO

s , is not
Pareto-optimal, as it is dominated by XEASO

s alloc. #14. Moreover, XGASO
s contains

four additional dominated solutions not displayed in Table 2.1. These suboptimal
solutions show that GASO was often stuck in local maxima.

Table 2.2 presents a comparison between Y EASO
s and Y GASO

s in terms of the metrics
presented at the beginning of this section, using Yp as the reference set. The solu-
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tion set produced by EASO has smaller distance and higher coverage ratio GASO.
These results demonstrate that EASO yields a wider range of, and potentially better
solutions than the SOP orchestrators in [10,11]. Furthermore, and perhaps the most
distinguishing feature of EASO, is how well it enumerates the tradeoff space.

To illustrate this point, again consider Table 2.1, representing the nondominated
solutions returned by EASO and GASO. Now suppose a network operator using
GASO decides that GASO alloc. #5 (equiv. to EASO alloc. #10) is most appropriate
for his/her needs, because it offers the best compromise between BW and WCS.
However, EASO alloc. #11 is a better compromise, as it offers the same level of
WCS as GASO alloc. #5, but even better BW, at the expense of power. Moreover,
the diverse EASO solution set allows an operator to program the orchestrator to
automatically select an allocation based upon the prevailing network conditions. For
example, run EASO alloc. #11 during peak hours to conserve BW, and EASO alloc.
#10 during non-peak hours to save power.

2.5.3 Is EASO Scalable?

To evaluate its scalability, we simulated EASO on a large-scale, multi-tier application
data center scenario similar to the one presented in [4], but with the additional third
objective of power conservation (adjusted for various host/ToR power consumption
ratios). Specifically, we ran EASO on a simulated physical infrastructure consisting
of 40 aggregation switches, 160 ToR switches (4 x ToRs per aggregate), 2560 hosts
(16 x hosts per ToR), and 40960 VM slots (16 x VM slots per host), for the following
5-tier application requirements: T1: <40 x 4, 10 Mbps>, T2: <40 x 1, 100 Mbps>,
T3: <40 x 2, 50 Mbps>, T4: <40 x 1, 100 Mbps>, T5: <40 x 4, 10 Mbps>. Here
the first element in each tuple represents the number of VMs and slots required per
VM, e.g., <40 x 4, 10 Mbps> denotes 40 VMs requiring 4 slots and 10 Mbps BW
each. The NCFs remain the same as presented in Section 2.2.

At this scale, totally enumerating Yp is intractable [4]. Therefore, we constructed
an outer approximation (OA) of Yp based on the well known “constraint method”
found in MOP literature [17]. Specifically, we formulate each ordered pair of NCF
utility functions, (f1,f2), (f1,f3), (f2,f1),(f2,f3),(f3,f1),(f3,f1) as a biobjective op-
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Table 2.3: Performance of three runs of EASO vs. GASO for large scenario. Best,
moderate, and worst results are shaded green, yellow, and red, respectively.

timization problem (BOP) where the first utility function is cast as a discrete set
of lower bounds (e.g., Cf1 for f1 where Cf1 = {0.005,0.010, ... ,0.975}), and the sec-
ond is maximized for each. The OA then consists of all points (cf1 ,f2,f3) where f2

and f3 are separately maximized for each cf1 ∈ Cf1 , and so on for (f1, cf2 ,f3) and
(f1,f2, cf3). Note that tractably constructing a tight OA for nonlinear BOPs is a
challenging problem in and of itself [33].

Table 2.3 illustrates the performance of EASO with respect to OA for different sets
of input parameters4. Observe that there is a clear tradeoff between time and opti-
mality. As the size of input parameters (L,K,s) increase, EASO produces better and
more diverse5 solution sets at the cost of increased execution time. The “short-run”
parameter set (25,25,2), completes in just over a minute, hence most appropriate for
network operators with rapidly changing tenant application requirements. In con-
trast, the “long-run” parameter set (75,75,6) takes over an hour to complete, and
thus may be warranted for steady state data center operations where network con-
figurations are unlikely to change frequently. Finally, the “medium-run” parameter
set (50,50,4) finishes in under ten minutes, and represents a reasonable compromise
between agility and quality. The increase of EASO execution time (last row of Table
2.3) corroborates the time complexity analysis in Section 2.4.3.

4For comparative purposes, we ran a fine-grained parametric analysis of GASO over f1 using a
range of mutation sizes. Note that GASO performed worse than the EASO “medium-run” parameter
set in every category, including execution time.

5Because the size of OA is very large (843 solutions), coverage should be viewed as a relative
metric, as obtaining high absolute coverage values is not possible for relatively small values of L.
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Figure 2.4: EASO Nondominated Front vs. Outer Approximation (OA) of Yp, for a
large-scale data center scenario.

Figure 2.4 depicts the EASO “long-run” solution set vs. OA for the large-scale data
center scenario. From this figure, we can see that the EASO solution set is well spread
and relatively close regarding OA. Also realize that the EASO solutions are at least
as close to Yp as OA, since points in OA are not necessarily feasible.

2.6 Conclusion
We have demonstrated that that our proposed evolutionary approach can enumerate
a wider range of, and potentially better solutions than, current orchestrators for
relatively large data center networks.

For future work, we find several areas intriguing. The mutation and recombination
evolutionary primitives may be further refined and adapted for other orchestration
tasks, such as traffic engineering, risk management, or cybersecurity. For example,
in [16], one specialized mutation procedure is used to select alternate routing paths
between network services. Fine-tuning the tradeoff space based on operational re-
quirements and automated decision making with respect to the tradeoff space are
other promsining areas, e.g., how to enumerate a relevant subset of the tradeoff space
in less time, or how to select the best EASO candidate solution given prevailing
network conditions.
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CHAPTER 3:
An Application-Aware Approach to Scalable Online 

Placement of Data Center Workloads

This chapter focuses on the challenges of achieving application-aware resource alloca-
tions that not only provide desirable outcomes in terms of operator objectives, but are
also desirable for minimizing resource contentions both within and between applica-
tion workloads. Moreover, we show that by precomputing ideal workload allocations
in a contention-free environment, such as a simulated empty topology, the resultant
logical application workload (LAW) may be used as a single atomic unit for allocating
a workload. This is in contrast to the tens to hundreds of workload VMs that would
typically require individual per VM allocation. As a result, not only are the corre-
sponding LAW allocations largely free of application contentions vs. existing per VM
methods, but also by using the larger-grained LAW allocation algorithms, workload
placement can be accomplished one order of magnitude faster than current solutions,
achieving average allocation times of less than a second for data center networks with
hundreds of switches and thousands of VMs.

Data center operators strive for maximum resource utilization while satisfying tenant
service level agreements; however, they face major challenges as application workload
types are diverse and tenants add, remove, and update their workloads sporadically to
meet changing user demands. Currently, operators allocate workload VMs primarily
in an application agnostic fashion, focusing on minimizing total resource usage. In this
work, we first show that such allocations can be suboptimal and then present a new
application-aware approach that explicitly models resource preferences of individual
workloads. Further, we propose a new LAW abstraction to enable precomputation
of the required relative positioning of an application’s VMs and allocation of these
VMs in a single atomic step, leading to online algorithms that are one order of magni-
tude faster than existing per VM placement solutions. We then develop a statistical
extension of LAW to add flexibility in characterizing application requirements and
to support prioritization of workloads. Using realistic workload traces and physical
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topologies, we evaluate our algorithms in a simulated large-scale data center setting,
and demonstrate their performance advantages and potential tradeoffs versus existing
solutions.

3.1 Introduction
The data center operators of large enterprises and public cloud providers face major
challenges in allocating virtual machines (VMs) to individual application workloads.
First, the workloads are diverse in sizes (measured by the number of VMs required,
the amount of link bandwidth required, running time, etc.), in resource consumption
characteristics (e.g., computation intensive vs. data intensive), and in performance
requirements such as bounds on response times and application availability [34]. Sec-
ond, the increased flexibility and agility provided by software-defined data center
networks allows enterprises and public cloud tenants to rapidly add, remove, update,
and prioritize their workloads to meet sporadically changing user demands. There
is an urgent need for online allocation algorithms that can deal with such dynamic
behaviors without incurring too much latency [24,27]. Last, but not least, the opera-
tors must strive for efficient uses of their physical resources (link bandwidth, electrical
power, etc.) in order to minimize cost while meeting the quality of service require-
ments of applications.

Maximizing resource utilization within data centers is a problem that many prior
efforts have attempted to solve using various approaches, including integer linear pro-
gramming [23], greedy heuristics [3,4,10,11], and genetic algorithms [16,28]. However,
we observe that this body of work overwhelmingly strives to optimize cumulative re-
source usage among all hosted tenant applications while deferring the per application
performance concerns to relatively low level mechanisms such as CPU scheduling
and traffic engineering, despite recent studies demonstrating that different types of
workloads contend for different types of resources and consequently how VMs of an
application are relatively positioned can significantly impact the performance of an
application [13, 14]. Specifically, it would be advisable not to co-locate VMs of com-
putation intensive workloads to avoid unnecessary CPU contention while at the same
time, position VMs of the same data intensive workload as close as possible to reduce
both bandwidth contention and communication latency [14].
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In other words, while workload placement should concern about cumulative resource
usage, additional opportunities exist to intelligently place the VMs of individual work-
loads to improve per application performance of all hosted applications. In this paper,
we investigate a placement strategy, which we term “application-aware”, to leverage
such opportunities. More specifically, we explicitly model the resource preference
of each workload and develop a unified framework to characterize and minimize re-
source contentions introduced by a new workload, which can be between VMs of the
same workload as well as with respect to existing workloads. Further, we enhance
the application-aware approach by introducing a new logical application workload
(LAW) abstraction. The LAW represents the most desirable relative positioning of
the workload’s VM placement in a physical topology in terms of both meeting oper-
ator specific resource efficiency goals and minimizing resource contentions. We show
that a data center controller can precompute LAWs and subsequently assign VMs of
each workload in a single atomic step, leading to online algorithms that are one order
of magnitude faster than current per VM placement solutions.

Our contribution is multi-fold as follows.

1. First, we show that application agnostic workload placement can introduce un-
necessary resource contentions, and demonstrate potential performance gains from
precisely modeling resource contentions that can be introduced by a workload.
(Section 3.2)

2. Second, we formally define LAW and describe how to construct LAWs that mini-
mize potential resource contentions. We then design a range of bin packing heuris-
tics to place workloads on a per LAW basis and at the same time optimize different
cumulative resource usage objectives. (Section 3.3)

3. Third, we observe that LAW based workload placement can be infeasible sooner
than per VM placement. Consequently, we propose a statistical extension of the
LAW abstraction to add flexibility in characterizing application requirements. We
show that the extension permits a data center operator to increase LAW placement
feasibility via graceful degradation of application performance. (Section 3.4)

4. Fourth, we show that the statistical LAW extension provides a natural mechanism
to support prioritization of workloads, conceptually similar to the Random Early
Detection (RED) queueing [35]. (Section 3.5)
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5. Fifth, using a simulated scenario with realistic workload traces and a relatively
large data center topology, we evaluate the LAW based workload placement heuris-
tics and demonstrate their performance advantages and potential tradeoffs versus
existing solutions. (Sections 3.4, 3.5, and 3.6)

3.2 Application-Aware Placement
We motivate and illustrate the advantages of application-aware placement with a
simplistic but telling scenario. We also describe how to model a workload’s resource
preference and present metrics to characterize resource contentions introduced by a
workload.

First, from prior work we observe that there are two basic types of application work-
loads: 1) CPU or memory intensive workloads (e.g., meteorological, geological, and
particle physics simulations, or other high performance computing tasks), commonly
referred to as compute-intensive (CI) workloads, and 2) network or storage inten-
sive workloads (e.g., client-server or Hadoop and other big data applications), com-
monly referred to as data-intensive (DI) applications. Generally, state-of-the-art re-
search [13, 14] concludes that CI workloads perform better when the processes and
VMs are spread across separate CPU cores and hosts, respectively, while DI work-
loads perform better when the VMs (or processes) are placed on the same host (or
CPU core). For example, by placing all VMs of a client-server (DI) application on the
same physical host, tenfold increases in throughput have been observed [13]. In con-
trast, over-contention of CPU resources by VMs of CI applications have been shown
to increase job completion time by as much as 260% [13].

Therefore, we propose to extend the current workload representations, which primar-
ily specify the number of VMs and intra-VM bandwidth [10, 11, 30], to also include
a designation of application type (CI or DI). Such a classification may be specified
a priori by tenants, or determined post-allocation by the operator upon monitoring
workload resource usage in practice. In addition, we believe it is advantageous for
a data center to model the survivability requirement (i.e., resiliency against single
top-of-rack (ToR) switch failures) on a per application basis because typically, differ-
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(a) Application Agnostic Allocation

(b) Application Aware Allocation

Figure 3.1: An example contrasting application-aware vs. application agnostic VM
allocations. Green slots are for VMs of R1, red R2, brown R3, and purple R4. “C”
and “D” denote a CI and DI workload, respectively. The allocation on the right
considers application type (CI or DI) of each workload, and thus attempts to spread
VMs of R1 and R3 (CI) to minimize CPU contention, while consolidating VMs of R2
and R4 (DI) to minimize communication overhead.

ent applications have different levels of importance to the tenants. Commonly, the
survivability requirement is represented by a metric called worst-case survivability
(WCS), which is the maximal possible fraction of VMs taken offline due to a single
ToR failure [5].

Now consider the following simplistic scenario. Suppose four independent tenant ap-
plication workloads R1, R2, R3, R4, arrive in sequential order and have requirements
of <CI, 5, 10 Mbps, 0.5>, <DI, 5, 50 Mbps, 0.5>, <CI, 5, 10 Mbps, 0.5>, and <DI,
8, 50 Mbps, 0.5> respectively. The first value in the tuple represents the application
type (appType), the second value represents the number of VMs (numVMs) required,
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the third value represents the inter-VM bandwidth (BW) reservation requirement6,
and the fourth value represents the minimum required WCS7. Suppose the under-
lying physical infrastructure has a hierarchical tree topology, consisting of one core
switch as root, two aggregation switches, four ToR switches, four host servers per
ToR switch, and two VM slots per host server, where a “VM slot” is defined as a
standard physical resource unit (e.g., CPU, Memory) provisioned to a VM. Therefore,
the VMs are to be allocated against 4×4×2 = 32 possible slots.

Current solutions, such as [3,4,10,16], overwhelmingly attempt to maximize resource
utilization by finding a “best fitted” allocation of tenant application workloads that
minimizes some weighted global cost function associated with data center resource
usage, and more specifically, bandwidth usage. In theory, such approaches seem effec-
tive in maximizing global resource utilization. However, because global cost functions
are not capable of representing fine-grained contention points of independent tenant
application workloads (e.g., CI or DI), the “globally optimal” network allocations
produced by current solutions are unlikely to be optimal for each tenant application
comprising it. This situation is illustrated in Figure 3.1. The left part (3.1a) depicts
a best-fitted allocation representative of current solutions, which minimizes network-
wide bandwidth usage while satisfying application requirements R1, R2, and R3.
However, note that CI applications R1 and R3 are in contention with themselves for
CPU and memory on hosts H2, H5, and H6, and DI applications R2 and R4 do not
achieve optimal network/storage sharing benefit via host colocation: R2 misses an
opportunity for colocation under rack T1 and R4 misses a colocation opportunity
under rack T3. Figure 3.1b, in contrast, depicts an application-aware best-fitted al-
location, which not only minimizes network-wide bandwidth usage, but also provides
optimal conditions for each tenant application. Although CI applications R1 and R3
compete with each other on H12, they do not compete with themselves on any host,
and DI applications R2 and R4 achieve maximum intra-host colocation.

The example in Figure 3.1 also shows that application-aware allocation does not
always degrade each global utility metric. Here, the application-aware allocation

6Inter-VM bandwidth is reserved according to the “hose” model, as done in [30].
7Prior work in datacenter network orchestration [10,11] asserts that a WCS of 0.5 should be the

bare minimum acceptable to the network operator.
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method achieves less link congestion (i.e., smaller max BW) by using more physical
servers to host the VMs, a tradeoff that typically results in more power usage.

The insight that different types of tenant workloads have different host assignment
preferences motivates the need for a metric to capture such preferences. To this end
we propose a new Resource Contention Index (RCI) to evaluate the placement of
individual tenant applications (Def. 6).

Def. 6. (RCI for placement of workload w)

RCI(w) =


0 workload requires 1 VM

Host_Affinity(w) workload is CI

1−Host_Affinity(w) workload is DI

where:

Host_Affinity(w) = 1− (#of hosts hosting VMs of w)−1
(total VMs allocated for w)−1 ,

and Host_Affinity() is defined only when the total number of VMs allocated for w
is greater than 1.

The host affinity for some tenant application represents the degree by which its VMs
are intra-host colocated. A value of ‘0’ indicates that no application VMs share
the same host, and thus minimizes intra-application computational contention for
a CI workload, whereas a value of ‘1’ indicates that all application VMs share the
same host, hence maximizing intra-application data throughput for a DI workload.
RCI captures this fundamental difference in application preference between CI and
DI workloads in a single application-specific metric. Furthermore, we can take the
average (mean) RCI across all allocated workloads to provide a measure of global
application efficiency. Note that achieving an RCI of zero for all workloads is not
realistic because tenants may have competing objectives or constraints. Survivability
for instance, is directly at odds with RCI for DI workloads, as a host affinity of ‘1’
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implies WCS = 0. But having zero survivability is not acceptable for most tenants.
As another example, consider tenant budget constraints for a CI workload. It may
be cost prohibitive for a tenant to place each workload VM on a separate physical
host or CPU core. In such cases, a tenant may choose to settle a higher intra-VM
contention ratio (i.e., RCI > 0) in the interest of lower SLA costs.

A useful adaptation of RCI, termed computational resource contention (CRC), is
presented in Def. 7.

Def. 7. (Computational Resource Contention (CRC))

CRC = 1− (# of hosts hosting CI VMs)−1
(total CI VMs allocated)−1 , (3.1)

and CRC is defined only when the total CI VMs allocated is greater than 1.

This metric, by treating all CI applications as one group, represents the degree of
contention for computational (CPU/Memory) resources throughout the network. We
argue that CRC should be added to the collection of global cost functions used for
workload placement, as this metric is particularly relevant as an indicator of through-
put bottlenecking for CI applications, similar in nature and importance to the com-
monly used link congestion metrics of mean and maximum bandwidth usage for DI
applications. For the example depicted in Fig. 3.1, the application-aware allocation
on the right achieves a much lower CRC than its counterpart.

3.3 LAWs for Application Efficiency
To overcome the shortcomings of current, non-application-aware workload placement
approaches, we propose a new logical application workload (LAW) abstraction, which
serves as the fundamental unit of allocation for an application workload, as opposed
to individual VMs, in order to speed up the allocation and explicitly preserve the
relative positioning of intra-application VMs with respect to the best allocation the
operator would desire to obtain for the application on a simulated empty physical
infrastructure.
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3.3.1 Natures of LAW

Essentially, a LAW represents the best possible allocation for an application workload
from the perspective of the operator with respect to a given physical infrastructure.
It is specific to the allocation method used by the operator to meet the application’s
resource and performance requirements, and as such it unambiguously captures the
design intent of the operator.

Formally, we define a LAW as follows.

Def. 8. (Logical Application Workload (LAW)) Given an requirement speci-
fication R for workload w, a data center infrastructure P to host VMs of w, and a
VM allocation method M used by the operator, a LAW L(w,P,M,R) is a hypothetical
allocation for w by applying M on an empty P subject to requirements R.

When the physical infrastructure has a tree topology, a LAW can be simply modeled
as the subtree that contains the hypothetically allocated VMs, with additional an-
notations of required resources. For the application requirement tuple considered in
this paper, i.e., the four-tuple of (appType, numVMs, BW, WCS), each switch of the
subtree should be annotated with two parameters: r_slots for the total number of
VMs supported underneath, and r_bw for the total amount of bandwidth reservation
required on its upstream link. The two parameters are driven by the number of VMs
and number of computational resource units (i.e., slots) required by each VM, and
the BW requirements, while the relative positions of the VMs should minimize RCI
while meeting the WCS bound.

When the physical resource capacity is much larger than what the workload requires,
many subtrees can accommodate the LAW, i.e., support the relative positioning of
the VMs. In such a case, we model the LAW using the leftmost subtree. Similarly,
before the physically infrastructure is heavily utilized, allocation of a LAW should be
straightforward, involving a small number of checks of feasibility against the r_slots

and r_bw parameters. In other words, heuristics that allocate a workload on the
basis of its LAW should run faster than their per-VM counterparts in most scenarios
and therefore should be more suitable as an online solution.
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Intuitively, compared to a finer-grain p er-VM a llocation, a  LAW based allocation 
method may trade off some network-wide performance such as power efficiency and 
bandwidth utilization in order to maximize the quality of service of individual appli-
cations. However, the former has its own problem as it allocates VMs sequentially 
and as such VMs allocated earlier in the sequence may prevent the overall allocation 
from maximizing global utility. An investigation of this interesting tradeoff will be 
presented in Section 3.4. In the rest of this section, we focus on how to leverage the 
concept of LAW to create an online VM allocation solution that can respond to 
dynamic workload input.

3.3.2 Constructing Efficient LAWs

While the existing application agnostic solutions [3,4,10,10,11,16,28] can be directly
used to create LAWs, we propose to extend these solutions to consider application
characteristics (e.g., CI vs. DI) by applying Algorithm 3.1 post-allocation in order
to obtain LAWs with the smallest RCI possible while meeting other application re-
quirements. This is accomplished by both a) spreading the CI VMs of each rack over
the maximum number of available hosts, and b) concentrating the DI VMs of each
rack onto the smallest possible number of physical hosts. Specifically, as presented
in Algorithm 3.2, the procedure Construct-LAW(P0,N) first runs an existing per
VM allocation scheme on an empty physical topology (simulated), and then calls Al-
gorithm 3.1 on the same input, which, depending on the application type, rearranges
some of the VMs to minimize RCI while satisfying other requirements. The selected
allocation is then converted into a LAW by (i) removing all elements of the physical
infrastructure tree not used by the application, and (ii) tallying up the number of
descendant VMs (r_slots) and the reserved upstream bandwidth (r_bw) parameters
for each of the remaining nodes.

It is important to note that a data center controller can pre-construct LAWs for
expected workloads8 against available infrastructures and store the results (LAW
subtrees) in a hash table. This way, the online allocation algorithm (presented next)
will need minimum time to obtain the LAW for a new workload request.

8For the scope of this paper, store all combinations of elements of each of the discrete ranges of
numVMs, intra-VM BW, and WCS for both CI and DI app types.
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Algorithm 3.1 “App-Aware Allocation Adjustment”
1: procedure App-Aware-Adjust(w,R,P )
2: . input w: workload id
3: . input R: requirement spec. for w
4: . input P : physical topology; allocated
5: if R.type = CI then . Minimize host affinity
6: for each ToR t ∈ P do
7: Spread VMs of w across hosts in t
8: while meeting BW and WCS requirements
9: end for
10: else if R.type = DI then . Maximize host affinity
11: for each ToR t ∈ P do
12: Concentrate VMs of w onto hosts in t
13: while meeting BW and WCS requirements
14: end for
15: end if
16: end procedure

Algorithm 3.2 “LAW Construction”
1: procedure Construct-LAW(w,R,P0)
2: . input w: workload id
3: . input R: requirement spec. for w
4: . input P0: physical topology; empty
5: Per-VM-Allocation(w,R,P0)
6: App-Aware-Adjust(w,R,P0)
7: end procedure

3.3.3 Allocating LAWs

Allocating a LAW to a physical infrastructure (which may or may not be empty)
needs to meet a set of global objectives defined by the network operator. These
global objectives have traditionally included minimizing power usage [6] and link
congestion [16], but we argue that the CRC objective (Def. 7) defined in Section 3.2
should also be considered.

Conceivably, an algorithm to explore the efficient frontier of LAW allocations with
respect to the global objective space could be developed, for instance an algorithm
similar to EASO [28] that takes a set of LAWs as input and produces a set of efficient
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proposed allocations as output, where each satisfies all LAWs. However, we defer this
challenge to future work, and instead focus efforts on the more fundamental, low-
level problem of allocating each individual LAW in a manner that is both fast and
resource efficient, with the goal of minimizing some global cost function. Specifically,
we consider the single-objective cost functions of 1) power usage, 2) link congestion
(i.e., mean and max BW usage), and 3) CRC.

In the remainder of this section, we describe a general algorithm for allocating a
LAW to the physical infrastructure, and then discuss the use of different heuristics for
minimizing the global cost functions described previously. Because we are allocating
LAWs, i.e., sets of VMs that are placed with strict relative positioning requirements,
we cannot directly apply heuristics for individual VM placement, as done in [36,37].

Thus, we propose Algorithm 3.3, which takes the precomputed LAW L for an appli-
cation workload (assumed to satisfy all requirements R of workload w), a physical
network state P (i.e., physical infrastructure with current allocation), and a cost-
minimizing heuristic h as input, and attempts to find a feasible allocation for the
workload. Specially, we consider three heuristics in this paper: (1) “Min Power”:
referred to as best-fit or tightest-fit in the classic bin packing problem literature [36],
it seeks to map VMs of L onto hosts with the smallest number of free slots, effectively
minimizing the number of active hosts; (2) “Min BW”: similar to the max-rest bin
packing heuristic [36], it seeks to map VMs of L onto hosts with the largest number of
free slots, effectively balancing bandwidth allocation and minimizing BW congestion
(i.e., maximum link BW); (3) “Min CRC”: designed to spread CI workloads as evenly
among hosts as possible while attempting to place DI workloads within the same
subtree as previously allocated CI workloads (to allow maximum CI workload distri-
bution). While the underlying approach of Algorithm 3.3 is generally applicable to
tree-based data center topologies including Fat-Tree and VL2, for ease of exposition,
we assume that P has a simple tree structure.

At the heart of LAW based allocation is to map each LAW node (ln) to a unique
physical node (denoted by ln.pn) at the same tree level that has sufficient resources
to support the requirements of ln.r_slots and ln.r_bw. After considering several
different tree search algorithms to explore the feasible ln−→ ln.pn search space, in-
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Algorithm 3.3 “Online LAW Allocation”
1: procedure Allocate-LAW(L,P,h)
2: . input L: LAW, P : physical topology
3: . input h: cost-minimizing heuristic method
4: for each level l from “ToR” to “core” do
5: for each LAW node ln ∈ L at level l do
6: for each physical ToR pn ∈ P at level l do
7: if Assign-Min-Cost(ln,pn) < ∞ then
8: Save best matching of ln.children,

pn.children for (ln,pn)
9: end if
10: end for
11: if no saved matchings for ln then

return false
12: end if
13: end for
14: end for
15: Assign mapping L.root.pn = P.root . core nodes
16: ME = edge set for saved best matching of

L.root.children,P.root.children
17: while ME 6= ∅ do
18: Extract next edge (ln,pn) from ME
19: Assign mapping ln.pn = pn
20: Add edge set for saved best matching of

ln.children,pn.children to ME
21: end while
22: Allocate VMs according to ln−→ ln.pn mappings

and update f_slots and f_bw of each pn accordingly.
23: Call Alg. 3.1 for application-aware adjustment.
24: return true
25: end procedure

cluding depth-first search, breadth-first search, best-first (A*) search, and backtrack-
ing approaches, in the interests of scalability, we ultimately decided to model the
problem of finding the “best” set of feasible ln−→ ln.pn mappings as a minimization
variant of the classical assignment problem, also known as the minimum weighted
bipartite matching problem [38]. To this end, Algorithm 3.3 uses the Hungarian
or Kuhn-Munkres algorithm, originally proposed by Kuhn [39] and later refined by
Munkres [40], as a subroutine in the Assign-Min-Cost sub-procedure. The details
are given below.
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Algorithm 3.3 “Online LAW Allocation” (Cont.)
19: procedure Assign-Min-Cost(ln,pn)
20: Initialize a bipartite graph G =< Vl,Vp,E = ∅>
21: where Vl = ln.children and Vp = pn.children
22: for each pair of nodes (u ∈ Vl,v ∈ Vp) do
23: add new edge < u,v > to E
24: if v.f_slots≥ u.r_slots∧pn.f_bw ≥ u.r_bw

then
25: h_val = Get-Heuristic(pn,h,L)
26: set edge weight = u.r_slots×h_val
27: else set edge weight = ∞
28: end if
29: end for
30: Add dummy nodes to Vl and associated ∞ edges
31: until ‖Vl‖= ‖Vp‖
32: ME = Kuhn-Munkres(G)
33: . ME stores the minimum weighted edge set
34: Remove edges with dummy nodes from ME
35: return sum of edge weights of ME
36: end procedure

37: procedure Get-Heuristic(pn,h,L)
38: if h = “Min Power” then return pn.f_slots
39: end if
40: if h = “Min BW” then return pn.r_slots
41: end if
42: if h = “Min CRC” then
43: if L.type = “CI ′′ then return pn.ci_slots
44: else return pn.slot_capacity−pn.ci_slots
45: end if
46: end if
47: end procedure

Checking Feasibility

Algorithm 3.3 determines LAW allocation feasibility by first checking at ToR level as
follows. For each LAW ToR Tl and each physical ToR Tp, it constructs a bipartite
graph consisting of hosts of Tl on one end and hosts of Tp on the other. An edge
is added between a pair of nodes on the opposite ends if and only if the physical
host has sufficient VM slots to support the LAW host. The edge weight assigned is
equal to the number of slots required by the LAW host (i.e., the r_slots parameter)
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multiplied by a heuristic value associated with the the physical host’s current state:
The heuristic value equals the number of free VM slots (f_slots) for “Min Power”
and the number of reserved slots (r_slots) for “Min BW”. There are two cases for
“Min CRC”. If the LAW represents a CI workload, the heuristic value equals the
number of reserved CI slots (ci_slots); otherwise, it equals the slot capacity less the
number of reserved CI slots. The scaling of r_slots ensures that when a set of LAW
hosts can be supported by multiple physical hosts, the LAW host with the largest
VM requirement will be matched with the physical host with the smallest heuristic
value, and so on.

Because typically Tl has a smaller number of hosts than Tp but the Hungarian algo-
rithm requires a complete bipartite graph of equal size partitions as input, we modify
the bipartite graph as done in [41], by 1) adding special edges of infinite weight (rep-
resenting “infeasibility”) for all pairs of LAW and physical hosts that are not yet
connected, and 2) adding dummy nodes to Tl with infeasible (infinite weight) edges
from each dummy node to all nodes in Tp. As such, the Hungarian algorithm al-
ways returns a complete minimum weight matching, but this matching may include
some infinite weight edges, representing “no feasible assignment” [41]. After running
the Hungarian algorithm on the modified bipartite graph, we remove the dummy
nodes (and associated edges) from the returned matching. If the remaining mapping
still contains edge(s) with infinite weight, then it is safe to to say that Tp cannot
support Tl.

Once the feasibility between each pair of LAW and physical ToR’s is determined,
the same process repeats for nodes upward the LAW hierarchy (e.g., first the two
aggregation switches, and then the core switch for the example scenario in Figure 3.1),
until (i) the LAW root (core) is reached, at which point the LAW is determined to
be feasible, or (ii) if, for some intermediate node of L, no feasible mappings exist
between it and a physical counterpart, then Allocate-LAW returns false and LAW
L is determined to be infeasible for P .

Allocate-LAW(L,P,h) returns true if and only if the Kuhn-Munkres algorithm
returns a finite sum of edge weights. At each level of feasibility checking, a finite edge
weight is assigned to a prospective ln−→ ln.pn mapping if and only if the mapping
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is feasible, i.e., the physical node ln.pn has sufficient VM slots and available uplink
bandwidth to meet the requirements of the LAW node ln. And because the Kuhn-
Munkres algorithm returns the set of edges comprising a minimum-weight matching,
the sum of the edge weights returned by the Kuhn-Munkres algorithm is finite if
and only if there exists a feasible ln −→ ln.pn mapping for each LAW node. Thus,
Allocate-LAW(L,P,h) returns true if and only if there exists a feasible mapping
for each LAW node.

General LAW Allocation

Once a LAW L is determined to be feasible as described previously (lines 4 to 11),
Algorithm 3.3 proceeds to determine the best ln−→ ln.pn mappings using a top-down
approach, from the LAW root (core) down to the LAW leaf nodes (hosts), selecting
the best LAW-to-physical mappings at each level of the hierarchy based upon the
values of the saved matchings that minimize the chosen heuristic (lines 15 to 20).
Next, after the ToR mappings have been determined, the LAW VMs are allocated
according to their respective ln−→ ln.pn mappings (line 22). Finally, VM placements
are adjusted to ideal placement for application objectives by calling Algorithm 3.1.

Complexity Analysis

Space Complexity = O(|L| ·C2), where C represents the maximum number of chil-
dren of any node pn ∈ P . Space complexity is dominated by one of two factors: 1)
the number of edges in the largest bipartite graph G, which may contain up to C2

edges, and 2) the total number of edges maintained in the saved matchings. Because
each of the O(|L|) internal LAW nodes may contain up to C matchings of size C, the
total number of edges maintained in the saved matchings is O(|L| ·C2). Thus, the
resultant space complexity is O(C2 + |L| ·C2) = O(|L| ·C2).

Time Complexity = O(|L| ·C4). Time complexity is dominated by the execution time
of the Kuhn-Munkres algorithm, which runs in O(C3) and executes up to C times
for each of the O(|L|) internal LAW nodes, thus yielding a resultant time complexity
of O(|L| ·C4).
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LAW Allocation Example
We conclude this section by illustrating the execution of Algorithm 3.3 for each heuris-
tic method to allocate workloads in the example scenario presented in Section 3.2.
First, ideal LAWs are constructed for each workload, depicted in Figure 3.2, using
Algorithm 3.2. Next, Algorithm 3.3 allocates the workloads in the order they arrive
(R1, R2, R3, R4), resulting in the allocations shown in Figure 3.3, depending on the
chosen allocation heuristic.

(a) LAW R1, R3

(b) LAW R2 (c) LAW R4

Figure 3.2: LAWs for workloads R1-R4 used in the example scenario of Fig. 3.1. The
r_slots and r_bw annotations are omitted for simplicity.

Note that LAW R4 is not feasible using the “Min CRC” heuristic method, since the
resultant network state after allocating LAWs R1-R3 does not permit any feasible
allocation of LAW R4. Therefore, mapping an entire LAW subtree to the physical
infrastructure in a single atomic step appears to incur a tradeoff between performance
gain and an increased likelihood of infeasibility.

Observation on Infeasibility
Although not necessarily intuitive, the reason why “Min CRC” encounters infeasibility
sooner than the other heuristic methods is relatively straightforward. Because “Min
CRC” explicitly seeks the maximum spread of CI workload VMs across ToRs and

53



(a) “Min Power”

(b) “Min BW” (c) “Min CRC”

Figure 3.3: LAW allocations using “Min Power,” “Min BW,” and “Min CRC” heuris-
tics for example scenario.

hosts within ToRs, as more CI LAWs are allocated, it becomes increasingly difficult
to allocate DI LAWs, which require the use of a large number VM slots on a single
host in order to achieve minimum RCI. In the case of the example scenario, LAW R4
could not be feasibly allocated given the allocations of LAWs R1-R3 using “Min CRC”
(Figure 3.3c). Thus, in order to allocate workload R4, either the use of a per VM
allocation method, such as GASO, or some method for deallocating and reallocating
previous LAWs to make room for the next one, e.g., a backtracking approach, is
required. In the next section, we will investigate this performance vs. infeasibility
tradeoff further using a large-scale data center scenario, and subsequently propose
our Statistical LAW solution to this infeasibility challenge in Section 3.5.

3.3.4 Applying LAWs to Different Topologies
In this section we describe how to apply LAWs to different types of physical network
topologies like fat-tree [12], VL2 [42], and BCube [43]. Because LAWs are topology-
dependent, by definition, it is important to understand how LAW construction and
allocation may be performed for different types of physical topologies. Fat-tree and
VL2 are both multi-rooted hierarchical trees with redundant links connecting devices
between levels of the tree hierarchy. BCube is a non-hierarchical topology that uses a
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number of vertically arranged switches in addition to the ToR switches, which provide
end-to-end server communication via server-to-switch network links exclusively, i.e.
there are no physical connections between switches.

Although the algorithms presented in this chapter assume a single-rooted, simple hi-
erarchical tree topology about which to construct and allocate LAWs, applying the
LAW Construction (Alg. 3.2)) and LAW Allocation (Alg. 3.3) algorithms to han-
dle different types of topologies is relatively straightforward. First, Algorithm 3.2 is
topology agnostic, and hence applicable “as-is” for constructing LAWs for any arbi-
trary data center topology, since it takes the physical topology as an input parameter,
and subsequently uses an operator-specified per VM allocation method assumed to
place the VMs onto the topology in a desirable fashion.

Second, although Algorithm 3.3 is topology dependent, it can be extended to han-
dle multi-rooted, redundant link topologies with the addition of a single “dummy”
root node of which each of the core switches comprising the multi-rooted topology
are made children of the dummy root using dummy network links of capacity = 0.
Redundant links are accounted for by way of setting multiple “uplink BW” variables
for devices with multiple available upstream connections. When placing a workload
across devices with several available uplinks of sufficient capacity, a method of select-
ing one must be chosen. Link selection heuristics such as “Min Congestion” or “Min
Available BW” may be appropriate. By way of these implementation adjustments,
we can soundly perform LAW allocation for multi-rooted and redundant hierarchical
network topologies using Algorithm 3.3.

For non-hierarchical data center topologies such as BCube, Algorithm 3.3 can be
extended by first using the dummy root strategy described above, and then by making
all non-hierarchical component switches children of the root using dummy network
links of capacity = 0. However, although this approach remains sound, it may not
be very well suited for large non-hierarchical data center networks, as the value of
C (maximum number of children of any node), will likely be large due to the high
number of dummy root children created when attempting to adapt this approach to
handle a non-hierarchical network.
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3.4 Evaluation
In this section, we evaluate the performance of proposed LAW based placement heuris-
tics against existing solutions in a simulated (relatively) large-scale data center en-
vironment comparable to ones used in related work [4]. The topology consists of 40
aggregation switches, 160 ToR switches (4 x ToRs per aggregate), 2560 hosts (16 x
hosts per ToR), and 40960 VM slots (16 x VM slots per host).

3.4.1 Setup

Representation of Existing Solutions
We choose to adapt the GASO allocation algorithm presented in [28] to represent
existing solutions. GASO is chosen because it is extensible to an arbitrary number
of disparate objectives and customizable by the operator via weightings for each
objective, similar to [10, 11]. For our purpose, the global cost function is a weighted
sum of power consumption and mean link bandwidth usage. By default, GASO
uses a greedy search for solutions that will minimize the global cost, and as such
may converge prematurely to local minima [28]. Therefore, we enhance GASO by
implementing a genetic algorithm to diversify candidate solutions as done in related
work [16,28]. We set the candidate solution population size to 10, and perform up to
25 evolutions for each workload request; these parameters are shown to be required
for the size of our topology [16,28].

Per VM Application-Aware Solutions
To make our evaluation more complete, we seek to understand how the performance
of LAW based heuristics compare to that of solution that is application-aware but
places workloads one VM at a time. We call the latter a per VM application-aware
solution. We have developed such a solution by further enhancing GASO. Therefore,
we evaluate two distinct implementations of GASO: 1) The “default” version, which
weighs power and BW usage highest, and 2) an “application-aware” version, which
weighs RCI and CRC highest. Both versions of GASO we use the power and BW usage
reduction heuristics from [28]. The application-aware version additionally uses an
RCI and CRC reduction heuristic that executes Algorithm 3.1 to move (if necessary)
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application VMs between hosts in each rack to reduce RCI and CRC. Since the
purpose of the default version of GASO is to model non-application-aware solutions,
it does not use this application-aware heuristic.

In addition, we refine the LAW based heuristics so that when it is infeasible to allocate
a LAW in one atomic step, they resort to per VM allocation for that workload.

Workload Traces
The workloads are randomly generated and their size distributions are comparable to
what used in related work [4]. Specifically, four types of workloads are used to model
heterogeneous [4] compute-intensive and network-intensive resource requirements:

Type 1: <CI, numV Ms x 4 slots, 5 Mbps, 0.5 WCS>

Type 2: <CI, numV Ms x 2 slots, 10 Mbps, 0.7 WCS>

Type 3: <DI, numV Ms x 1 slot, 60 Mbps, 0.5 WCS>

Type 4: <DI, numV Ms x 2 slots, 30 Mbps, 0.7 WCS>

where numV Ms ranges between 40 and 200, and also includes the number of slots
per VM to represent heterogeneous workload requirements, as done in [4].

In each run, the workload trace is produced by selecting one of the workload types
(1-4) and a value for numV Ms (40-200) uniformly at random, and deducting the
number of slots required of the workload from the total number of slots available in
the physical infrastructure. Each randomly generated workload is added to the trace
until the next generated workload exceeds the infrastructure slot capacity. After
the workload trace is generated, each heuristic under evaluation attempts to place
workloads of the trace in the order that they were generated, i.e., online, to the
simulated infrastructure.

Performance Metrics
Our evaluation focuses on the following metrics: (1) power usage, 2) BW usage (mean
link BW), 3) link congestion (maximum link BW), 4) mean RCI, 5) CRC, and 6)
execution time. We also seek to understand the extent of LAW allocation infeasibility
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tradeoff. Specifically, for each run we identify the fraction of VM capacity allocated
when the first infeasible LAW occurs.

3.4.2 Results

Here, we present the results of LAW and GASO allocation methods over an average of
ten workload traces by depicting their performance in power consumption (Fig. 3.4),
BW usage (Fig. 3.5), link congestion (Fig. 3.6), CRC (Fig. 3.7), RCI (Fig. 3.8), and
execution time9 (Fig. 3.9). Plotted points in each figure represent the average objec-
tive metric values of a feasible state for a given fraction of VM capacity allocated (i.e.,
physical infrastructure utilization) over a series of ten runs using different allocation
methods. The vertical lines are color coordinated to match the allocation methods
and each represents the average capacity allocated when the first infeasibility occurred
for the corresponding allocation method.

Figure 3.4: Power usage vs. capacity allocated.

Based on these results, we make several observations. First, observe that the “Min
Power” LAW allocation heuristic dominates the default GASO per VM allocation
method. The “Min Power” LAW allocation heuristic offers similar power conserva-

9The simulation consists of approximately 3000 lines of Java code, and was run (serially) using
64-bit JVM. The host PC was running 64-bit Windows on an Intel 2.4 GHz quad-core processor
with 24 GB of RAM.
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Figure 3.5: Mean BW usage vs. capacity allocated.

Figure 3.6: Max. link BW usage vs. capacity allocated.

tion, BW usage, and CRC as default GASO, but additionally provides much lower
RCI, with an execution time that is an order of magnitude faster. Thus, based on
this comparison it is clear that application-aware allocation for this scenario may
be strictly superior to non-application-aware allocation, i.e., tenant application ob-
jectives may be achieved nearly “for free,” with little to no degradation of operator
objectives. Next, observe the straightforward tradeoff between power usage and CRC.

Default GASO and “Min Power” maintain relatively high CRC in order to minimize
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Figure 3.7: CRC vs. capacity allocated.

Figure 3.8: Mean RCI vs. capacity allocated.

power usage, whereas App-Aware GASO, “Min BW,” and “Min CRC” tradeoff higher
power consumption for reduced CRC. Furthermore, although App-Aware GASO is
designed to jointly minimize RCI and CRC, because it is bounded by the parameters
and limitations of a genetic algorithm to perform its search (e.g., population size,
number of evolutions, etc), it does not achieve ideal Mean RCI as the physical infras-
tructure becomes utilized when compared to the LAW allocation heuristics, which
each explicitly preserve the RCI for each constructed LAW when making allocations.
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Figure 3.9: Execution time vs. capacity allocated.

This RCI gap between GASO App-Aware and LAW becomes more pronounced as the
infrastructure becomes more utilized. At 30% utilization, RCI for GASO App-Aware
is only slighty higher than LAW, but at 60% utilization, RCI for GASO App-Aware
is more than double that of LAW.

Tradeoffs involving bandwidth are less straightforward. LAW allocation preserves the
provisioned BW for each constructed LAW, and both GASO variants include mean
link BW as an optimization criterion, so differences in BW usage (Fig. 3.5) are rel-
atively insignificant. The maximum link BW plot (Fig. 3.6) provides an indicator
of link congestion. Observe that the “Min BW” allocation heuristic provides signifi-
cantly lower link congestion than the other allocation methods until the infrastructure
becomes about 50% utilized.

Regarding feasibility, observe that each LAW allocation heuristic encounters infeasi-
bility at widely different levels of physical infrastructure utilization. The reason for
this is complex, as several factors, including workload size, workload trace composi-
tion (CI : DI ratio), physical topology tree structure, physical topology utilization,
and heuristic allocation method, determine the likelihood of encountering LAW in-
feasibility. Moreover, in this scenario there is clear trend indicating that allocation
methods that more aggressively attempt to spread CI workloads, i.e., reduce CRC,
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are more likely to encounter infeasibility sooner. “Min Power” prefers maximum con-
centration of all workloads and has the highest feasibility rating (83.6%). “Min BW”
prefers maximum distribution of all workloads and has moderate feasibility (60.7%).
“Min CRC” explicitly spreads CI workloads and has the least feasibility (30.1%).

Finally, observe that “Min CRC,” while having relatively low feasibility, appears to
dominate GASO App-Aware in this scenario, by achieving lower BW usage, link
congestion, CRC, and RCI while using generally the same amount of power. Fur-
thermore, regarding algorithm execution time (Fig. 3.9), LAW allocation (hundreds
of milliseconds) is an order of magnitude faster than the GASO variants (tens of
seconds).

3.4.3 LAW for Architectures of Different Dimensions

In this section, we look at how varying the physical dimensions of hierarchical net-
work architectures affect allocation feasibility of different LAW placement heuristics.
Here, physical dimensions are defined in terms the four-tuple (A,T,H,S), where A

represents the number of aggregate switches under each core switch, T represents the
number of ToR switches under each aggregate switch, H represents the number of
host servers under each ToR switch, and S represents the number of VM slots per host
server. Regarding different values for these dimensions, we are particularly concerned
with how LAW feasibility is affected as the network architecture is “scaled-out,” or
made more horizontal by increasing the number of physical devices (i.e., increasing
the values of A, T , and H), as well as “scaled-up,” or made more vertical by increasing
the capacity of each physical host server (i.e., increasing the value of S).

In order to provide a fair LAW feasibility comparison across architectures of varying
physical proportions, the total VM slot capacity for each architecture is held constant
at 10240 slots. Thus, although each architecture evaluated in this section has different
values for (A,T,H,S), they all have the same slot capacity, i.e., for each architecture,
A ·T ·H ·S = 10240. The workload traces used are the same as before (Section 3.4.1).

Table 3.1 illustrates the feasibility results for each of the “Min Power,” “Min BW,”
and “Min CRC” LAW placement heuristics across a range of hierarchical network
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architectures with different dimensions and a 10240 VM slot capacity. The range of
dimensions in this table represents a spectrum of hierarchical network architectures
that are scaled-up and/or scaled-out to varying degrees. The rows closer to the top
of the table represent network architectures that are proportionally scaled-up, while
those closer to the bottom represent more scaled-out architectures.

Table 3.1: LAW feasibility results for “Min Power,” “Min BW,” and “Min CRC” for
different 10240 VM slot infrastructures of varying dimensions. The values denote the
average physical infrastructure utilization (fraction of VM capacity allocated) when
the corresponding allocation heuristic and LAW type first encounter infeasibility.
Poor results (less than 50%) are shaded red, moderate (at least 50% but less than
80%) yellow, and good (at least 80%) green. * reference dimensions

From these results, we observe two clear trends, using the (10,4,16,16) dimension ar-
chitecture as a reference point. First, as an architecture is scaled “out” and “down”
from (10,4,16,16) to (20,8,16,4) i.e., approaches dimensions closer to the bottom of
Table 3.1, LAW feasibility more than doubles for “Min CRC” (120% increase), and
increases significantly for “Min Power” (17% increase), but only increases marginally
for “Min BW” (4% increase). Intuitively, these results should be expected: by increas-
ing the number of switches and servers, there is more room to spread CI workloads
throughout the infrastructure, resulting in much higher feasibility for “Min CRC,”
but less so for the other heuristics, as their allocation feasibilities are not as dependent
as “Min CRC” on the ability of the infrastructure to handle distributed CI workloads.
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Second, as an architecture is scaled “up” and “in” from (10,4,16,16) to (5,4,16,32),
i.e., approaches dimensions closer to the top of Table 3.1, LAW feasibility drastically
decreases for all heuristics due to the inability to spread CI workloads throughout the
infrastructure. Although allocation feasibilities for “Min Power” and “Min BW” are
generally not as infrastructure-sensitive as “Min CRC,” as the network architecture
approaches more vertical physical topologies like (5,4,16,32), the resultant inability
to spread CI workloads begins to hinder allocation feasibility regardless of heuristic
type (less than 50% feasibility across all heuristic types in this example, as illustrated
by the first row of Table 3.1).

Therefore, based on these results, we conclude that scaled-out architectures are gener-
ally better for achieving higher LAW feasibility versus scaled-up architectures. How-
ever, this problem of finding the physical network architecture that yields the highest
LAW feasibility for a given workload forecast (e.g., trace) and LAW allocation heuris-
tic seems like a fertile ground for future work.

3.5 Statistical LAWs
As seen from the the execution time plot (Figure 3.9), the GASO per VM workload
placement algorithm runs an order of magnitude slower than LAW allocation, and as
such, is less suitable for online workload placement tasks, particularly for large data
center networks. The GASO execution time is comparable to other workload place-
ment solutions that use genetic algorithms10, such as [16, 28]. Therefore, although
per VM allocation may be used to address the problem of allocating a workload
when LAW infeasibility is encountered, we argue that an online solution that grace-
fully relaxes the ideal application allocation, as represented by the LAW structure, is
preferable in the interests of both reduced RCI and reduced execution time. We also
considered an alternative LAW backtracking approach to address the issue of LAW
infeasibility, but such an approach disrupts current allocations and initial evaluations
significantly degraded execution time, so we defer the exploration of such alternative
options to future work.

10Greedy heuristics, like those used in [3, 4] run faster (order of seconds) for placing large work-
loads, but they are prone to suboptimal convergence to local minima when multiple objectives are
considered.
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Therefore, we propose a Statistical LAW allocation strategy to explore the LAW fea-
sibility vs. performance tradeoff. A Statistical LAW is natural LAW relaxation which
offers a compromise between complete LAW and per VM placement approaches, by
representing a percentage of the workload VMs as a “relaxed” LAW, and considering
the remainder of the workload VMs as individual units of allocation for some per VM
allocation method.

3.5.1 Example

The 70% Statistical LAW model of workload R4 from the Section 3.2 example scenario 
is illustrated in Figure 3.10, and represents the preservation of at least 70% of the 
original LAW VMs (6 VMs) while using per VM allocation for the remainder (2 
VMs). Figure 3.11 depicts the resultant network state after using the “Min CRC” 
LAW heuristic to allocate the 70% LAW for R4 (Figure 3.10) to the physical network 
state depicted in Figure 3.3c.

Figure 3.10: Statistical LAW (70%) for workload R4 in example scenario.

By using a statistical measure to relax LAW VM positioning requirements, a compro-
mise between ideal workload allocation and feasibility is achieved, while still main-
taining the fast LAW allocation times compared to traditional per VM approaches.

3.5.2 Construction and Allocation

An x% Statistical LAW for some original LAW L is constructed by removing
(100−x)% of L’s VMs (floor) from L by removing the VMs sequentially, where each

65



Figure 3.11: “Min CRC” LAW allocation using a 70% Statistical LAW to allocate
previously infeasible workload R4 for the example scenario.

VM is removed from the LAW host containing the most VMs (or from a host under
the most populated ToR in the case of a tie). The removed VMs are maintained
with the LAW, and are allocated in a per VM fashion after the Statistical LAW is
allocated. For Statistical LAW, the goal of the per VM allocation heuristic for the
“remainder” VMs is to minimize RCI subject to WCS constraints. Hence, for CI
workloads, the per VM allocations strive to minimize host affinity by allocating the
VMs to hosts with the fewest number of CI slots allocated. For DI workloads, these
allocations seek to maximize host affinity by concentrating the VMs as closely as
possible to the rest of the LAW VMs without violating the WCS bound.

3.5.3 Statistical LAW Results

Here, we present the results of Statistical LAW allocation using the same workload
traces and simulated physical infrastructure as the Section 3.4 evaluation. Statistical
LAW allocation methods use a progressive backoff approach. For each workload in the
trace, first complete LAW allocation is attempted, then progressively 90%, 70%, 50%,
and finally 30% Statistical LAW allocations are attempted if the previous Statistical
LAW allocation attempt failed to feasibly allocate the workload. For Statistical LAW,
the workload is considered infeasible only if all allocation attempts (complete, 90%,
70%, 50%, 30%) fail. Of course, an even lower Statistical LAW, such as 10% LAW
may be attempted if 30% LAW allocation fails, but at that point we observe the
resultant LAW structure would be too degraded to provide much benefit.
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Figure 3.12: Effect of Statistical LAW on CRC.

Figure 3.13: Effect of Statistical LAW on Mean RCI.

The Statistical LAW results as shown in Table 3.2 clearly demonstrate the advan-
tage of using a Statistical LAW approach vs. per VM allocation when complete LAW
allocation is not feasible. Notably, in this scenario, the Statistical LAW allocation
performs similarly to complete LAW allocation, with both RCI and execution time
increased by only a small constant factor as workloads become overwhelmingly infea-
sible for Statistical LAW, which begins to occur around 85% infrastructure utilization,
as seen in Figures 3.13 and 3.14, respectively. In other words, for each resource usage
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Table 3.2: Statistical LAW feasibility results for “Min Power,” “Min BW,” and “Min
CRC” for the large-scale evaluation. The values denote the average physical in-
frastructure utilization (fraction of VM capacity allocated) when the corresponding
allocation heuristic and LAW type first encounter infeasibility.

metric, there is very little performance degradation for using Statistical LAW com-
pared to complete LAW allocation, as can be seen by observation of plotted points
for Statistical LAW allocation methods beyond the amount of physical infrastructure
utilization at which complete LAW allocation fails (values in the first row of Table
3.2, denoted by dotted vertical lines in each figure). For instance, in Figure 3.12, al-
though the “Min CRC” LAW placement heuristic begins to incur slightly higher CRC
than App-Aware GASO at approximately 40% infrastructure utilization, remains very
similar (within a few percentage points) throughout the entire trace.

3.6 LAWs for Workload Prioritization
As demonstrated in the previous section, using Statistical LAW allocation may greatly
improve LAW allocation feasibility versus complete LAW allocation, while still pro-
ducing resource and application efficient allocations with fast workload placement
times. However, because Statistical LAW may result in increased application RCI
for statistically allocated workloads, the operator may prefer to take a proactive ap-
proach in applying Statistical LAW allocations to low priority workloads in order to
increase the LAW feasibility of high priority workloads to ensure minimum RCI for
them. In this section, we propose the Early Statistical LAW allocation strategy, a
proactive approach that trades off suboptimal placement of low priority workloads to
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Figure 3.14: Effect of Statistical LAW on execution time.

increase LAW feasibility for high priority workloads.

3.6.1 Early Statistical LAW Allocation

In this work, we explore a simple binary priority scheme and leave more elaborate
prioritization to future work. We seek to increase the feasibility of high priority
workloads by allocating low priority workloads using Early Statistical LAW, which
differs from default Statistical LAW allocation only in the per VM allocation heuristic
used to allocate the non-LAW “remainder” VMs. While per VM allocations using
default Statistical LAW strive to minimize RCI, Early Statistical LAW uses these per
VM allocations as a “compromise” to increase the feasibility for future high priority
LAWs.

We achieve these compromise allocations by placing the remainder CI VMs in the
infrastructure subtree with the fewest available slots using the classical “tightest fit”
bin packing heuristic, with a preference for placement on hosts with more DI VMs.
Intuitively, using such a heuristic should provide more “contiguous” VM slot space in
other infrastructure subtrees, thus providing a higher likelihood of LAW feasibility for
future high priority workloads. Because this additional contiguous slot space comes at
the cost of bandwidth efficiency, we do not compromise the placement of DI VMs, but
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instead allocate them in the same fashion as default Statistical LAW: with maximum
intra-application host affinity while satisfying WCS constraints.

3.6.2 Early Statistical LAW Results

We evaluate Early Statistical LAW using the same scenario as before except this
time we randomly assign each workload a binary priority value (“high” or “low”).
We compare the performance of Early Statistical LAW to default Statistical LAW,
specifically with regard to the feasibility of high priority workloads. Each low priority
workload is allocated as a 50% Statistical LAW, using the compromise placement
heuristic described in the preceding paragraph, while high priority workloads are
allocated identically to Statistical LAW, using the same progressive backoff schedule.

Table 3.3: Early Statistical LAW feasibility results for high priority workloads in
the large-scale evaluation. The raw values denote the average physical infrastructure
utilization when the corresponding allocation heuristic and LAW type first encounter
high priority workload infeasibility. The values in parentheses denote the percentage
of feasibility increase over default Statistical LAW allocation.

Table 3.3 illustrates the merits of using Early Statistical LAW to improve feasibility for
high priority workloads. By proactively allocating low priority workloads using Early
Statistical LAW, high priority feasibility is increased for each LAW type versus default
Statistical LAW allocation. Consider “Min CRC,” the LAW allocation heuristic that
is generally the least feasible. By using the Early Statistical LAW allocation strategy,
complete LAW feasibility is increased by 43.3% for high priority workloads. However,
while Early Statistical LAW allocation leads to better placements for high priority
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workloads (i.e., closer to desired, more likely to meet SLA), this increased feasibility
comes at the cost of increased RCI, depicted in Figure 3.15.

Figure 3.15: RCI vs. feasibility tradeoff introduced by Early Statistical LAW (using
Min CRC heuristic).

Regarding this feasibility vs. RCI tradeoff, it is clear that the increase in RCI with
Early Statistical LAW is a result of suboptimal allocations for low priority workloads,
since complete LAW allocations preserve RCI and high priority LAW feasibility is
increased using this strategy. This feasibility vs. RCI tradeoff should be considered
by the operator when making a determination to use Early Statistical LAW. For
example, suppose an operator decides to use the “Min CRC” LAW placement heuristic
based on forecasting evidence that more CI workloads than DI workloads are likely
to arrive. Since LAW placement using “Min CRC” has been shown to have relatively
low LAW feasibility, he/she may want to invoke Early Statistical LAW allocation for
low priority workloads, especially if there are high priority tasks or tenants active,
and accept higher RCI for low priority workloads as a tradeoff. On the other hand,
if there are relatively few high priority tasks or tenants active, or if the operator is
unsure of the types of workloads likely to arrive, then he/she may decide to use the
“Min Power” LAW placement heuristic with no Early Statistical LAW allocations,
since “Min Power” has been shown to have relatively high complete LAW feasibility
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as is, and the relatively benign workload forecast may allow electrical cost savings
while still providing good RCI for active tasks and tenants.

3.7 Related Work
Prior work on application-aware workload placement mostly focuses on maximizing 
the performance of certain applications (e.g., data intensive [20], high-performance 
computing applications [22], etc.) or optimizing specific aspects of application perfor-
mance (e.g., network throughput [23,26], fairness [24]). Other related solutions such 
as CloudMirror [3] and Ostro [4] provide bandwidth guarantees and ensure high ap-
plication availability. To the best of our knowledge, this work is the first to propose 
precomputing desired workload placements for individual applications (i.e., LAWs) 
and subsequently using them to speed up and prioritize workload placement while 
meeting per application performance requirements.

3.8 Conclusion
We have demonstrated that an application-aware approach, by optimizing the relative
positioning of VMs of individual workloads, can meet both per application require-
ments and cumulative resource usage goals. Furthermore, we have proposed a new
abstraction (i.e., LAW) to enable online workload placement that is one order of
magnitude faster than existing solutions, and scalable to large data center scenarios.

In the big picture, we view this work as a first step towards understanding the tradeoff
between maximizing application performance and optimizing network-wide resource
usage. We believe there is a wide design space for new formulations and heuristics to
meet specific combinations of application-level requirements and operational goals.
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CHAPTER 4:
Conclusion

Here, we summarize the merits of applying each of the design principle individually,
i.e., the distinct benefits of applying either the EASO or LAW contribution indepen-
dently, and then propose a new design strategy for combining these design principles
into a synthesized approach that realizes the benefits of each, which we term “EASO-
LAW Synthesis.” Finally, the dissertation concludes with a discussion of open issues
and future work.

4.1 Summary of Contributions
The first principle, comprehensive tradeoff exploration, provides the operator with
a wide range of meritorious placement options for a given workload, but does so at
the cost of execution time, and without much consideration for application-specific
resource contentions. The second principle, LAW, provides rapid workload allocation
times, even for large data center networks, lacks the tradeoff exploration of the former,
thus requiring the operator to specify desirable LAW characteristics (i.e., weighted
objectives) a priori.

Comprehensive Tradeoff Exploration. We propose a novel, pure MOP formu-
lation for data center orchestration, and demonstrate how our new EASO algorithm
can enumerate a wide range of, and potentially better, solutions than current or-
chestrators for relatively large data center networks by exploring tradeoffs based on
Pareto-dominance, rather than attempting to reducing the multi-objective tradeoff
space to a single-objective optimization problem as done by existing NCF resource
allocation solutions. Also, unlike existing NCF resource allocation solutions, EASO
provides a set of proposed allocations, each with individual merits, rather than a
single “best” allocation (which may not necessarily best achieve operator objectives
if NCF weightings are set improperly or if the orchestration algorithm converges to a
local minima), as demonstrated in Chapter 2.
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LAW-based Resource Allocation. By explicitly modeling application preferences
and developing a novel LAW abstraction that preserves them, we have demonstrated
how to achieve application-aware allocation for data center workloads at time scales
that are an order of magnitude faster than other multi-objective workload placement
approaches, while still achieving high quality resource allocations in terms of NCF
and operator objectives. This is in contrast to current per VM workload placement
approaches that use a finer granularity of allocation for application components (e.g.,
VMs). By precomputing larger atomic units of allocation (e.g., LAWs) that represent
entire workloads, we have demonstrated the feasibility of scalably allocating such
LAWs in a manner that further reduces contention among applications while yielding
sub-second workload placement times for placing large data center workloads.

4.2 EASO-LAW Synthesis: Better Than the Sum
of Its Parts

This strategy involves first performing comprehensive NCF tradeoff exploration using
EASO to precompute a wide range of LAWs desirable to the network operator, and
then, as new tenant workload requirements arrive, operator preferences and network
conditions are queried to select the ideal LAW and corresponding heuristic for work-
load allocation. By implementing such a design strategy, which should be relatively
straightforward given the technical contributions of Chapters 2 and 3, and the content
of this section, an orchestration solution that both performs comprehensive tradeoff
exploration and achieves scalable, resource efficient, and application-aware placement
of large-scale data center workloads, can be realized.

The key insight in building an effective data center orchestration solution using com-
prehensive tradeoff exploration (as implemented by EASO) and LAW lies in under-
standing how to synthesize these two conceptually distinct principles into one, such
that the resultant solution enjoys both the tradeoff exploration of EASO, and the
rapid and application-aware workload allocation of LAW. To deepen the understand-
ing of how this may be achieved, consider Figure 4.1, which depicts the system flow
of (a) standalone EASO, (b) standalone LAW, and (c) EASO-LAW Synthesis.
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(a) EASO (b) LAW (c) EASO-LAW

Figure 4.1: System flow diagrams for (a) EASO, (b) LAW, and (c) EASO-LAW Syn-
thesis. Steps highlighted in red are computationally intensive (order of tens of seconds
or more), those contained in blue are part of the typical process flow, and those in
green provide tradeoff exploration. EASO-LAW Synthesis (c) provides tradeoff ex-
ploration while avoiding time intensive computation in the typical process flow.

Each of the above diagrams represents the execution process for its corresponding
system. Colors are used to highlight key steps in the execution process. Steps con-
tained in the contiguous blue rectangle are considered part of the typical process
flow for the system and will be executed very frequently. These steps describe the
system execution after initialization, when it is ready and waiting to process new
tenant workload requirements. Steps highlighted require time intensive computation,
typically on the order of tens of seconds or more. These steps are associated with
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the computation of desirable resource efficient allocations or sets of allocations in the
case of tradeoff enumeration. Steps highlighted in green represent the comprehensive
exploration of NCF tradeoffs, a desirable feature of an orchestration program, and
our first fundamental design principle.

By using these colors to highlight the corresponding aspects of each of the systems
depicted in Figure 4.1, the differences between the three designs, and the comple-
mentary nature of EASO and LAW are made clear. EASO provides comprehensive
tradeoff exploration, thus enabling a variety of proposed allocations to be instantiated
on demand according to changing network conditions and operator objectives (e.g.,
NCF weightings), but it performs this relatively expensive computation within its
typical process flow each time a new workload arrives. This expensive computation
may hinder the ability of EASO to rapidly allocate tenant workloads during periods
of high tenant demand. In contrast, the typical process flow of LAW contains no
computationally expensive steps, as the vast majority of tenant workloads are pre-
computed, thus permitting the fast allocation times necessary to keep up with high
tenant demand. However, because LAW does not accomplish tradeoff exploration, the
operator needs to specify NCF weights a priori so that desirable LAWs may be pre-
computed. But these weights may change due to varying network conditions, tenant
demand level, and SLA, requiring LAWs to be re-precomputed for the new weightings.
Thus, LAW may be unsuitable for use in dynamic environments requiring frequent
re-precomputation of LAWs.

EASO-LAW Synthesis provides the benefits of both EASO and LAW, with
the drawbacks of neither. With EASO-LAW Synthesis, we use EASO in the pre-
computation step (Step 1 of Figure 4.1(c)), to generate a set of desirable tradeoff
LAWs for each of the vast majority of commonly encountered workloads. So in con-
trast to standalone LAW, which only stores a single precomputed LAW for each tenant
workload requirement tuple, EASO-LAW Synthesis stores a set of precomputed trade-
off LAWs for each workload. Hence, EASO-LAW Synthesis shares the comprehensive
tradeoff exploration benefit of EASO, allowing the operator to dynamically accom-
modate changing objectives or network conditions on demand, without the need for
LAW re-precomputation. Moreover, EASO-LAW Synthesis also offers the speed ad-
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vantage of LAW, as LAW tradeoff precomputation is performed in advance of the
typical process flow, which is free of steps involving time intensive computation.

Observation 1: EASO and LAW are complementary, and enable better
orchestration when used together. By combining EASO and LAW as described
above, we can achieve a synthesized data center orchestration solution that yields a net
benefit greater than the sum of each of its parts when considered individually, because
each compensates for the drawbacks of the other. LAW construction and allocation
algorithms permit sub-second placements of large application workloads in large-scale
data center networks, but by themselves, only a single application-aware allocation
is considered. Complementary to LAW, EASO enables comprehensive exploration of
the multi-NCF tradeoff space, but does not explicitly preserve application preferences,
and the quality of the resultant nondominated solution set is limited by the “time
budget” of the data center operator (i.e., the amount of time the operator can afford
to let EASO run). However, when used together as a single orchestration solution,
a set of desirable tradeoffs for common or existing application workloads can be
discovered by EASO and stored as precomputed LAWs, thus enabling the fast and
application-aware allocation of workloads corresponding to the on-demand tradeoff
selection preferences of the data center operator, which are likely to change frequently
due to dynamic network conditions and varying objective priorities.

Observation 2: EASO-LAW Synthesis enables efficient scaling existing
workloads. A common and effective approach for scaling existing application work-
loads as end user demand increases is to simply allocate additional instances of the
workload in demand, as done in the Network Function Center work [16]. Because
EASO-LAW Synthesis archives previously encountered workloads, allocating addi-
tional instances of in-demand workloads can be achieved in fractions of a second
using LAW allocation, enabling efficient workload scaling, even for relatively large
workloads and physical topologies. Furthermore, if network conditions or operator
priorities change during the life of a workload, because EASO has precomputed LAWs
for a wide-range of desirable tradeoffs, the scaling of the workload (i.e., the placement
of additional workload instances can be adjusted seamlessly to accommodate the new
preferences and requirements of the operator.
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Observation 3: Accurate application forecasting enables new workloads
to be placed quickly and efficiently using EASO-LAW Synthesis. Although
execution for thorough EASO tradeoff exploration (i.e., “long run”) may be too slow
for dynamic large-scale data center environments, if the operator can forecast the
types of workloads that are due to arrive in advance, he/she can run EASO prior to
their arrival and precompute the efficient LAW tradeoffs in advance, thus allowing
for fast allocation times when they arrive. In many ways, the challenges associated
with achieving fast and efficient allocations using EASO-LAW Synthesis are similar
to those associated with developing an effective cache “hit ratio”. Developing and
implementing strategies for minimizing real-time EASO execution cycles seems to be
a fertile ground for future work.

4.3 Future Work
In this section, we identify the limitations of our contributions, and then go on to
outline the next steps in this research to address these limitations. Next, we iden-
tify additional research areas that seem a natural fit for our EASO-LAW Synthesis
approach, and conclude the dissertation.

Overcoming limitations of EASO. EASO has two limitations. First, for a given
tenant application workload requirement, it requires the operator to select a tradeoff
from the nondominated set of candidate proposals. Due to the potentially vast multi-
NCF tradeoff space (e.g., 843 different nondominated candidate solutions for the
large-scale workload presented in in Section 2.5.3), requiring a human to examine
each prospective tradeoff individually, without some degree of automated assistance,
may require more time and resources than EASO uses to generate the tradeoffs in
the first place. Hence, for tradeoff exploration to be more useful in practice, decision
support systems and machine learning approaches could be used to reduce the number
of tradeoffs available to the operator by automatically discarding those that are least
likely to achieve operator goals while meeting tenant SLA, given current or forecasted
network conditions.

Second, EASO tradeoff exploration may be time consuming. Depending on the work-
load size, number of applications, size of physical topology, and the quality and di-
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versity of candidate proposals desired by the operator, EASO tradeoff exploration
can take from tens of seconds to hundreds of minutes, or longer. However, an im-
plementation of our proposal for EASO-LAW Synthesis should effectively overcome
this limitation by precomputing a wide range of LAWs for various tenant workload
specifications with respect to the multi-NCF tradeoff space.

Generalizing LAW Construction. In this work, LAWs are constructed to repre-
sent a single application (or application-tier). However, complex applications com-
prised of heterogeneous “tiers,” or sub-applications, such as the 200 VM, 5-tier tenant
workload described in Section 2.5.3, are commonly found in practice [3,4,25]. There-
fore, evaluating LAW construction (precomputation) and allocation for such complex
multi-tier workloads in a real-world data center environment is a critical next step
towards realizing the deployment of a LAW-based orchestration system. Also, a more
granular resource contention classifier is desirable for multi-tier applications, since
each individual application tier may have different resource contention characteris-
tics, and the interactions between application tiers may be complex. For example,
a recent study [13] demonstrated that resource contention for a large-scale Hadoop
TeraSort workload varied based on the number of clusters (i.e., groups of VMs) used to
execute the task. When two 4-VM clusters were used, the workload was bottlenecked
by storage and network (DI) contention. However, when four 4-VM clusters were
used to process the the same task, it was CPU contention that limited throughput.

Considering these challenges, we believe our proposed approach for EASO-LAW Syn-
thesis is well positioned to handle the placement of complex multi-tier applications.
We demonstrated in Section 2.5.3 the capability of EASO to generate a diverse set
of candidate proposals for allocating complex multi-tier applications, such that each
proposal satisfies tenant SLA requirements and is nondominated with respect to the
multi-NCF tradeoff space in terms of operator objectives. By retaining the intra-
application tier labels for each VM in an EASO proposal, a LAW may be constructed
consisting of VMs from heterogenous application tiers, as depicted in Figure 4.2. And
because LAW allocation preserves relative positioning of intra-application VMs within
the physical infrastructure, Algorithm 3.3 can be used for placing such heterogeneous
multi-tier LAWs without modification to achieve application-efficient workload place-
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ments that meet tenant-operator SLAs. Statistical LAW allocation, however, becomes
more challenging, since per VM allocation of certain application tiers may result in
breach of SLA, but not for others. Thus, a promising area for future work for al-
locating heterogenous multi-tier LAWs involves understanding and representing the
criticality of each intra-application tier, and customizing the Statistical LAW process
for VM removal and allocation to meet the requirements of each tier with respect to
SLA.

Figure 4.2: Heterogeneous multi-tier LAW constructed from a proposal generated by
EASO for allocating the 200 VM, 5-tier (40 VMs per tier) tenant workload described
in Section 2.5.3. VMs of tier T1 are represented by green ovals, tier T2 red ovals, tier
T3 brown ovals, tier T4 purple ovals, and tier T5 blue ovals. For brevity, logical host
allocations for each tier are only shown for those under the first logical ToR (vT1).
For the other logical ToRs (vT2-vT4), the number of VMs of each respective tier
allocated to logical hosts under underneath them is represented by the numbers in
the corresponding ovals.

Infeasibility is another limitation of LAW-based orchestration approaches. Clearly, if
it is infeasible to allocate a LAW for some tenant workload, it becomes more chal-
lenging to guarantee that the tenant-operator SLA is satisfied by some workload
allocation. And although our initial Statistical LAW evaluations presented in Sec-
tion 3.5.3 demonstrate marginal impact on intra-application contention (e.g., RCI),
determining whether or not the sub-optimality of some Statistical LAW placement
constitutes a breach of SLA, is an open issue.
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Of course, one way of combating the potential shortfalls of Statistical LAW allocation
is to simply increase complete LAW feasibility. Thus, exploring alternative ways to
increase complete LAW feasibility is yet another fertile area for future work. For
instance, an offline approach to rearrange previously allocated LAWs in order to
maximize the chance of feasibly allocating the next workload seems promising. Even
better would be a method of precomputing such rearrangements to best accommodate
a range of LAWs of different types and sizes.

Real world data center deployment. In this dissertation, our EASO and LAW
workload allocation approaches are evaluated using simulated data center topologies
and randomly generated workload traces. Although the range of parameters we use
to define the topologies and generate the workload traces are comparable to existing
work, our algorithms need to be implemented and evaluated on real data center
networks and compared side by side against other solutions, such as Corybantic [10],
Athens [11], Ostro [4], or CloudMirror [3], for allocating real tenant workloads with
real SLAs, in order to validate our approaches in practice.

Emerging opportunities. In addition to the above, we see opportunities to apply
our work to two other emerging network research areas: 1) automated NCF scaling,
and 2) network service function chain (SFC) provisioning of virtual network functions
(VNFs) for general network topologies.

1. Automatically adjusting the number of application components of workloads (i.e.,
auto-scaling) based on forecast user demand seems to be another promising area
for applying our approach. Auto-scaling essentially adds another dimension to the
tradeoff space by considering the number of workload VMs as a variable, rather
than a hard constraint. Tradeoffs involving more or less VMs are interesting from
an SLA perspective as tenants ideally would like to achieve maximum performance
with the fewest number of VMs, whereas cloud providers may want to find oppor-
tunities to sell more VMs to tenants with the promise of increased capability.

2. SFCs are similar to application workloads in that they can be represented logically
in terms of required resources, but SFCs are more complex as the VNFs that
comprise them (i.e., application VMs that perform specific network functions, such
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as stateful firewall, traffic load balancing, or web caching) not only require strict
component positioning requirements like LAWs, but also require the SFC to send
data through the VNFs in a specific order to preserve network policy. This is
equivalent to establishing a partial or total ordering of individual VMs within a
LAW, and then evaluating resource usage and application contentions subject to
the data flow defined by it.

It is an exciting time to study the orchestration of data center networks and the diverse 
sets of applications hosted within them. These networks are becoming ever more 
important to the mission sets of governments and corporations, as well as the daily 
routines of individuals. The size and diversity of cloud services and the data centers 
that provide them seem poised to grow at unprecedented rates in the years to come. 
Future data center orchestration approaches will need to continue to scale to 
even larger networks and application workloads, while remaining flexible and 
extensible enough to handle a wide range of emerging operator objectives and 
network environments.
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